Exemple #1
0
 def dry_run(self, mass):
     batch = len(mass)
     sss, labels, poss = handle_mass(mass)
     pooled_embs = []
     for ss, pos in zip(sss, poss):
         left, right = get_left_right_by_ss_pos(ss, pos)
         emb1 = B.compress_left_get_embs(self.bert, self.toker,
                                         left)  # (seq_len, 784)
         emb2 = B.compress_right_get_embs(self.bert, self.toker,
                                          right)  # (seq_len, 784)
         left, right = get_left_right_by_ss_pos(ss, pos, distant=2)
         emb3 = B.compress_left_get_embs(self.bert, self.toker,
                                         left)  # (seq_len, 784)
         emb4 = B.compress_right_get_embs(self.bert, self.toker,
                                          right)  # (seq_len, 784)
         # print(f'{emb1.shape[0]}, {emb2.shape[0]}')
         assert emb1.shape[0] == emb2.shape[0] == emb3.shape[
             0] == emb4.shape[0]
         mean = (emb1 + emb2 + emb3 + emb4) / 4  # (seq_len, 784)
         pooled = mean.mean(0)  # (784)
         pooled_embs.append(pooled)
     pooled_embs = t.stack(pooled_embs)  # (batch, 784)
     labels = t.LongTensor(labels)  # (batch), (0 or 1)
     if GPU_OK:
         labels = labels.cuda()
     o = self.classifier(pooled_embs)  # (batch, 2)
     self.print_train_info(o, labels, -1)
     return o.argmax(1), labels
Exemple #2
0
 def train(self, mass):
     batch = len(mass)
     sss, labels, poss = handle_mass(mass)
     pooled_embs = []
     for ss, pos in zip(sss, poss):
         left, right = get_left_right_by_ss_pos(ss, pos)
         emb1 = B.compress_left_get_embs(self.bert, self.toker,
                                         left)  # (seq_len, 784)
         emb2 = B.compress_right_get_embs(self.bert, self.toker,
                                          right)  # (seq_len, 784)
         # print(f'{emb1.shape[0]}, {emb2.shape[0]}')
         assert emb1.shape[0] == emb2.shape[0]
         mean = (emb1 + emb2) / 2  # (seq_len, 784)
         pooled = mean.mean(0)  # (784)
         pooled_embs.append(pooled)
     pooled_embs = t.stack(pooled_embs)  # (batch, 784)
     labels = t.LongTensor(labels)  # (batch), (0 or 1)
     if GPU_OK:
         labels = labels.cuda()
     o = self.classifier(pooled_embs)  # (batch, 1)
     loss = self.cal_loss(o, labels)
     self.zero_grad()
     loss.backward()
     self.optim.step()
     self.print_train_info(o, labels, loss.detach().item())
     return loss.detach().item()
Exemple #3
0
 def train(self, mass):
     batch = len(mass)
     sss, labels, poss = handle_mass(mass)
     pooled_embs = []
     clss_for_order_checking = []  # For order detector
     order_labels = []  # For order detector
     for ss, pos in zip(sss, poss):
         left, right = get_left_right_by_ss_pos(ss, pos)
         emb1 = B.compress_left_get_embs(self.bert, self.toker,
                                         left)  # (seq_len, 784)
         emb2 = B.compress_right_get_embs(self.bert, self.toker,
                                          right)  # (seq_len, 784)
         # print(f'{emb1.shape[0]}, {emb2.shape[0]}')
         assert emb1.shape[0] == emb2.shape[0]
         mean = (emb1 + emb2) / 2  # (seq_len, 784)
         pooled = mean.mean(0)  # (784)
         pooled_embs.append(pooled)
         # For order detector
         if len(left) == 2:
             if random.randrange(100) > 50:  # 1/2的概率倒序
                 left_disturbed = list(reversed(left))
                 order_labels.append(1)
             else:
                 left_disturbed = left.copy()
                 order_labels.append(0)
             cls = B.compress_by_ss_pair_get_mean(self.bert, self.toker,
                                                  left_disturbed)  # (784)
             clss_for_order_checking.append(cls)
         else:
             print(f'Warning, left length = {len(left)}')
     pooled_embs = t.stack(pooled_embs)  # (batch, 784)
     labels = t.LongTensor(labels)  # (batch), (0 or 1)
     order_labels = t.LongTensor(
         order_labels)  # (x <= batch) For order detector
     if GPU_OK:
         labels = labels.cuda()
         order_labels = order_labels.cuda()
     o = self.classifier(pooled_embs)  # (batch, 1)
     sector_loss = self.cal_loss(o, labels)
     # For order detector
     clss_for_order_checking = t.stack(
         clss_for_order_checking)  # (x <= batch, 784)
     output_ordering = self.classifier2(clss_for_order_checking)  # (x, 1)
     ordering_loss = self.cal_loss(output_ordering, order_labels,
                                   rate=0)  # 不存在数据不均衡问题
     loss = sector_loss + ordering_loss
     self.zero_grad()
     loss.backward()
     self.optim.step()
     self.print_train_info(o, labels, loss.detach().item())
     return loss.detach().item()
Exemple #4
0
 def dry_run(self, mass):
     batch = len(mass)
     sss, labels, poss = handle_mass(mass)
     pooled_embs = []
     for ss, pos in zip(sss, poss):
         left, right = get_left_right_by_ss_pos(ss, pos)
         emb1 = B.compress_left_get_embs(self.bert, self.toker,
                                         left)  # (seq_len, 784)
         emb2 = B.compress_right_get_embs(self.bert, self.toker,
                                          right)  # (seq_len, 784)
         assert emb1.shape[0] == emb2.shape[0]
         mean = (emb1 + emb2) / 2  # (seq_len, 784)
         pooled = mean.mean(0)  # (784)
         pooled_embs.append(pooled)
     pooled_embs = t.stack(pooled_embs)  # (batch, 784)
     labels = t.LongTensor(labels)  # (batch), (0 or 1)
     if GPU_OK:
         labels = labels.cuda()
     o = self.classifier(pooled_embs)  # (batch, 1), sigmoided
     self.print_train_info(o, labels, -1)
     return fit_sigmoided_to_label(o), labels