Exemple #1
0
class NERDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self, sents_src, sents_tgt):
        ## 一般init函数是加载所有数据
        super(NERDataset, self).__init__()
        # 读原始数据
        # self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
        self.sents_src = sents_src
        self.sents_tgt = sents_tgt

        self.idx2word = {k: v for v, k in word2idx.items()}
        self.tokenizer = Tokenizer(word2idx)

    def __getitem__(self, i):
        ## 得到单个数据
        # print(i)
        src = self.sents_src[i]
        tgt = self.sents_tgt[i]
        token_ids, token_type_ids = self.tokenizer.encode(src)
        output = {
            "token_ids": token_ids,
            "token_type_ids": token_type_ids,
            "target_id": tgt
        }
        return output

    def __len__(self):
        return len(self.sents_src)
class BertDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self, data) :
        ## 一般init函数是加载所有数据
        super(BertDataset, self).__init__()
        self.data = data
        print("data size is " + str(len(data)))
        self.idx2word = {k: v for v, k in word2idx.items()}
        self.tokenizer = Tokenizer(word2idx)

    def __getitem__(self, i):
        ## 得到单个数据
        # print(i)
        single_data = self.data[i]
        original_text = single_data[0]
        ans_text = single_data[1]

        token_ids, token_type_ids = self.tokenizer.encode(
            original_text, ans_text, max_length=maxlen
        )
        output = {
            "token_ids": token_ids,
            "token_type_ids": token_type_ids,
        }
        return output

    def __len__(self):

        return len(self.data)
class BertDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self, sents_src, sents_tgt, vocab_path):
        ## 一般init函数是加载所有数据
        super(BertDataset, self).__init__()
        # 读原始数据
        # self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
        self.sents_src = sents_src
        self.sents_tgt = sents_tgt
        self.word2idx = load_chinese_base_vocab(vocab_path, simplfied=True)
        self.idx2word = {k: v for v, k in self.word2idx.items()}
        self.tokenizer = Tokenizer(self.word2idx)

    def __getitem__(self, i):
        ## 得到单个数据
        src = self.sents_src[i]
        tgt = self.sents_tgt[i]
        token_ids, token_type_ids = self.tokenizer.encode(src, tgt)
        output = {
            "token_ids": token_ids,
            "token_type_ids": token_type_ids,
        }
        return output

    def __len__(self):

        return len(self.sents_src)
class BertDataset(Dataset):
    def __init__(self):
        super(BertDataset, self).__init__()
        self.sents_src = read_file(
            "/content/drive/My Drive/ColabNotebooks/summary/extra_dict/train.src"
        )
        self.sents_tgt = read_file(
            "/content/drive/My Drive/ColabNotebooks/summary/extra_dict/train.tgt"
        )
        self.sents_src = self.sents_src.split('\n')
        self.sents_tgt = self.sents_tgt.split('\n')

        self.idx2word = {k: v for v, k in word2idx.items()}
        self.tokenizer = Tokenizer(word2idx)

    def __getitem__(self, i):
        title = self.sents_tgt[i]
        content = self.sents_src[i]
        token_ids, token_type_ids = self.tokenizer.encode(content,
                                                          title,
                                                          max_length=maxlen)
        output = {
            "token_ids": token_ids,
            "token_type_ids": token_type_ids,
        }
        return output

        self.__getitem__(i + 1)

    def __len__(self):

        data_size = len(self.sents_src)
        return data_size
def ner_print(model, test_data, vocab_path, device="cpu"):
    model.eval()
    word2idx = load_chinese_base_vocab(vocab_path)
    tokenier = Tokenizer(word2idx)
    trans = model.state_dict()["crf_layer.trans"]
    for text in test_data:
        decode = []
        text_encode, text_ids = tokenier.encode(text)
        text_tensor = torch.tensor(text_encode, device=device).view(1, -1)
        out = model(text_tensor).squeeze(0) # 其实是nodes
        labels = viterbi_decode(out, trans)
        starting = False
        for l in labels:
            if l > 0:
                label = target[l.item()]
                decode.append(label)
            else :
                decode.append("other")
        flag = 0
        res = {}
        for index, each_entity in enumerate(decode):
            if each_entity != "other":
                if flag != each_entity:
                    cur_text = text[index - 1]
                    if each_entity in res.keys():
                        res[each_entity].append(cur_text)
                    else :
                        res[each_entity] = [cur_text]
                    flag = each_entity
                elif flag == each_entity:
                    res[each_entity][-1] += text[index - 1]
            else :
                flag = 0
        print(res)
Exemple #6
0
def read_corpus(dir_path, vocab_path):
    """
    读原始数据
    """
    sents_src = []
    sents_tgt = []
    word2idx = load_chinese_base_vocab(vocab_path, simplfied=True)
    tokenizer = Tokenizer(word2idx)
    files = os.listdir(dir_path)  #得到文件夹下的所有文件名称

    for file1 in files:  #遍历文件夹

        if not os.path.isdir(file1):  #判断是否是文件夹,不是文件夹才打开
            file_path = dir_path + "/" + file1
            print(file_path)
            if file_path[-3:] != "csv":
                continue
            df = pd.read_csv(file_path)
            # 先判断诗句的类型  再确定是否要构造数据

            for index, row in df.iterrows():
                if type(row[0]) is not str or type(row[3]) is not str:
                    continue
                if len(row[0].split(" ")) > 1:
                    # 说明题目里面存在空格,只要空格前面的数据
                    row[0] = row[0].split(" ")[0]

                if len(row[0]) > 10 or len(row[0]) < 1:
                    # 过滤掉题目长度过长和过短的诗句
                    continue

                encode_text = tokenizer.encode(row[3])[0]
                if word2idx["[UNK]"] in encode_text:
                    # 过滤unk字符
                    continue
                if len(row[3]) == 24 and (row[3][5] == ","
                                          or row[3][5] == "。"):
                    # 五言绝句
                    sents_src.append(row[0] + "##" + "五言绝句")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 32 and (row[3][7] == ","
                                            or row[3][7] == "。"):
                    # 七言绝句
                    sents_src.append(row[0] + "##" + "七言绝句")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 48 and (row[3][5] == ","
                                            or row[3][5] == "。"):
                    # 五言律诗
                    sents_src.append(row[0] + "##" + "五言律诗")
                    sents_tgt.append(row[3])
                elif len(row[3]) == 64 and (row[3][7] == ","
                                            or row[3][7] == "。"):
                    # 七言律诗
                    sents_src.append(row[0] + "##" + "七言律诗")
                    sents_tgt.append(row[3])

    print("第一个诗句数据集共: " + str(len(sents_src)) + "篇")
    return sents_src, sents_tgt
Exemple #7
0
def read_corpus_2(dir_path, vocab_path):
    """读取最近的一个数据集 唐诗和宋诗 """
    sents_src = []
    sents_tgt = []
    word2idx = load_chinese_base_vocab(vocab_path, simplfied=True)
    tokenizer = Tokenizer(word2idx)
    files = os.listdir(dir_path)  #得到文件夹下的所有文件名称

    for file1 in files:  #遍历文件夹

        if not os.path.isdir(file1):  #判断是否是文件夹,不是文件夹才打开
            file_path = dir_path + "/" + file1
            print(file_path)
            # data = json.load(file_path)
            with open(file_path) as f:
                poem_list = eval(f.read())

            for each_poem in poem_list:
                string_list = each_poem["paragraphs"]
                poem = ""
                for each_s in string_list:
                    poem += each_s

                cc = opencc.OpenCC('t2s')
                poem = cc.convert(poem)

                encode_text = tokenizer.encode(poem)[0]
                if word2idx["[UNK]"] in encode_text:
                    # 过滤unk字符
                    continue
                title = cc.convert(each_poem["title"])

                if len(title) > 10 or len(title) < 1:
                    # 过滤掉题目长度过长和过短的诗句
                    continue

                if len(poem) == 24 and (poem[5] == "," or poem[5] == "。"):
                    # 五言绝句
                    sents_src.append(title + "##" + "五言绝句")
                    sents_tgt.append(poem)
                elif len(poem) == 32 and (poem[7] == "," or poem[7] == "。"):
                    # 七言绝句
                    sents_src.append(title + "##" + "七言绝句")
                    sents_tgt.append(poem)
                elif len(poem) == 48 and (poem[5] == "," or poem[5] == "。"):
                    # 五言律诗
                    sents_src.append(title + "##" + "五言律诗")
                    sents_tgt.append(poem)
                elif len(poem) == 64 and (poem[7] == "," or poem[7] == "。"):
                    # 七言律诗
                    sents_src.append(title + "##" + "七言律诗")
                    sents_tgt.append(poem)

    print("第二个诗句数据集共:" + str(len(sents_src)) + "篇")
    return sents_src, sents_tgt
Exemple #8
0
def read_corpus_ci(dir_path, vocab_path):
    """ 读取宋词数据集"""
    import json, sys
    import sqlite3
    from collections import OrderedDict

    word2idx = load_chinese_base_vocab(vocab_path, simplfied=True)
    tokenizer = Tokenizer(word2idx)

    try:  # Python 2
        reload(sys)
        sys.setdefaultencoding('utf-8')
    except NameError:  # Python 3
        pass

    c = sqlite3.connect(dir_path + '/ci.db')

    cursor = c.execute("SELECT name, long_desc, short_desc from ciauthor;")

    d = {"name": None, "description": None, "short_description": None}

    cursor = c.execute("SELECT rhythmic, author, content from ci;")

    d = {"rhythmic": None, "author": None, "paragraphs": None}

    # cis = []
    sents_src = []
    sents_tgt = []

    for row in cursor:
        ci = OrderedDict(sorted(d.items(), key=lambda t: t[0]))
        ci["rhythmic"] = row[0]
        ci["author"] = row[1]
        ci["paragraphs"] = row[2].split('\n')
        string = ""
        for s in ci["paragraphs"]:
            if s == " >> " or s == "词牌介绍":
                continue
            string += s

        encode_text = tokenizer.encode(string)[0]
        if word2idx["[UNK]"] in encode_text:
            # 过滤unk字符
            continue
        sents_src.append(row[0] + "##词")
        sents_tgt.append(string)

        # cis.append(ci)

    # print(cis[:10])
    print("词共: " + str(len(sents_src)) + "篇")
    return sents_src, sents_tgt
Exemple #9
0
def ner_print(model, test_data):
    model.eval()
    idxtword = {v: k for k, v in word2idx.items()}
    tokenier = Tokenizer(word2idx)
    trans = model.state_dict()["crf_layer.trans"]
    for text in test_data:
        decode = []
        text_encode, text_ids = tokenier.encode(text)
        text_tensor = torch.tensor(text_encode, device=model.device).view(1, -1)
        out = model(text_tensor).squeeze(0) # 其实是nodes
        labels = viterbi_decode(out, trans)
        starting = False
        for l in labels:
            if l > 0:
                label = target[l.item()]
                decode.append(label)
            else :
                decode.append("O")
        flag = 0
        res = {}
        # print(decode)
        # print(text)
        decode_text = [idxtword[i] for i in text_encode]
        for index, each_entity in enumerate(decode):
            if each_entity != "O":
                if flag != each_entity:
                    cur_text = decode_text[index]
                    if each_entity in res.keys():
                        res[each_entity].append(cur_text)
                    else :
                        res[each_entity] = [cur_text]
                    flag = each_entity
                elif flag == each_entity:
                    res[each_entity][-1] += decode_text[index]
            else :
                flag = 0
        print(res)
class BertDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self):
        ## 一般init函数是加载所有数据
        super(BertDataset, self).__init__()
        ## 拿到所有文件名字
        self.txts = glob.glob('./state_dict/THUCNews/*/*.txt')

        self.idx2word = {k: v for v, k in word2idx.items()}
        self.tokenizer = Tokenizer(word2idx)

    def __getitem__(self, i):
        ## 得到单个数据
        # print(i)
        text_name = self.txts[i]
        with open(text_name, "r", encoding="utf-8") as f:
            text = f.read()
        text = text.split('\n')
        if len(text) > 1:
            title = text[0]
            content = '\n'.join(text[1:])
            token_ids, token_type_ids = self.tokenizer.encode(
                content, title, max_length=maxlen)
            output = {
                "token_ids": token_ids,
                "token_type_ids": token_type_ids,
            }
            return output

        self.__getitem__(i + 1)

    def __len__(self):

        return len(self.txts)
import sys
sys.path.append("/Users/xingzhaohu/Downloads/code/python/ml/ml_code/bert/bert_seq2seq")
from bert_seq2seq.tokenizer import Tokenizer, load_chinese_base_vocab
from bert_seq2seq.utils import load_bert

target = ["0", "1"]

cls_model = "./state_dict/bert_semantic_matching.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if __name__ == "__main__":
    vocab_path = "./state_dict/roberta_wwm_vocab.txt"  # roberta模型字典的位置
    model_name = "roberta"  # 选择模型名字
    # 加载字典
    word2idx = load_chinese_base_vocab(vocab_path, simplfied=False)
    tokenizer = Tokenizer(word2idx)
    # 定义模型
    bert_model = load_bert(word2idx, model_name=model_name, model_class="cls", target_size=len(target))
    bert_model.set_device(device)
    bert_model.eval()
    ## 加载训练的模型参数~
    bert_model.load_all_params(model_path=cls_model, device=device)
    test_data = ["你是不是我仇人#你是俺的仇人吗",
                "这个就没意思了#我没别的意思", 
                "查一下我的家在哪里#家在哪里?"]
    for text in test_data:
        with torch.no_grad():
            text_ids, _ = tokenizer.encode(text)
            text_ids = torch.tensor(text_ids, device=device).view(1, -1)
            print(text + " -> res is " + str(target[torch.argmax(bert_model(text_ids)).item()]))
Exemple #12
0
class Seq2SeqModel(nn.Module):
    """
    """
    def __init__(self, vocab_path, model_name="roberta"):
        super(Seq2SeqModel, self).__init__()
        self.word2ix = load_chinese_base_vocab(vocab_path)
        self.tokenizer = Tokenizer(self.word2ix)
        config = ""
        if model_name == "roberta":
            from bert_seq2seq.model.roberta_model import BertModel, BertConfig, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(config, self.bert.embeddings.word_embeddings.weight)
        elif model_name == "bert":
            from bert_seq2seq.model.bert_model import BertConfig, BertModel, BertLMPredictionHead
            config = BertConfig(len(self.word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(config, self.bert.embeddings.word_embeddings.weight)
        else :
            raise Exception("model_name_err")
            
        self.hidden_dim = config.hidden_size
        self.vocab_size = config.vocab_size


    def compute_loss(self, predictions, labels, target_mask):
        """
        target_mask : 句子a部分和pad部分全为0, 而句子b部分为1
        """
        predictions = predictions.view(-1, self.vocab_size)
        labels = labels.view(-1)
        target_mask = target_mask.view(-1).float()
        loss = nn.CrossEntropyLoss(ignore_index=0, reduction="none")
        return (loss(predictions, labels) * target_mask).sum() / target_mask.sum() ## 通过mask 取消 pad 和句子a部分预测的影响
    
    def forward(self, input_tensor, token_type_id, position_enc=None, labels=None, device="cpu"):
        ## 传入输入,位置编码,token type id ,还有句子a 和句子b的长度,注意都是传入一个batch数据
        ##  传入的几个值,在seq2seq 的batch iter 函数里面都可以返回
        input_shape = input_tensor.shape
        batch_size = input_shape[0]
        seq_len = input_shape[1]
        ## 构建特殊的mask
        ones = torch.ones((1, 1, seq_len, seq_len), dtype=torch.float32, device=device)
        a_mask = ones.tril() # 下三角矩阵
        s_ex12 = token_type_id.unsqueeze(1).unsqueeze(2).float()
        s_ex13 = token_type_id.unsqueeze(1).unsqueeze(3).float()
        a_mask = (1.0 - s_ex12) * (1.0 - s_ex13) + s_ex13 * a_mask 
            
        enc_layers, _ = self.bert(input_tensor, position_ids=position_enc, token_type_ids=token_type_id, attention_mask=a_mask, 
                                    output_all_encoded_layers=True)
        squence_out = enc_layers[-1] ## 取出来最后一层输出

        predictions = self.decoder(squence_out)

        if labels is not None:
            ## 计算loss
            ## 需要构建特殊的输出mask 才能计算正确的loss
            # 预测的值不用取最后sep符号的结果 因此是到-1
            predictions = predictions[:, :-1].contiguous()
            target_mask = token_type_id[:, 1:].contiguous()
            loss = self.compute_loss(predictions, labels, target_mask)
            return predictions, loss 
        else :
            return predictions
    
    def generate(self, text, out_max_length=80, beam_size=1, device="cpu", is_poem=False):
        # 对 一个 句子生成相应的结果
        ## 通过输出最大长度得到输入的最大长度,这里问题不大,如果超过最大长度会进行截断
        self.out_max_length = out_max_length
        input_max_length = max_length - out_max_length
        # print(text)
        token_ids, token_type_ids = self.tokenizer.encode(text, max_length=input_max_length)
        token_ids = torch.tensor(token_ids, device=device).view(1, -1)
        token_type_ids = torch.tensor(token_type_ids, device=device).view(1, -1)
        if is_poem:## 古诗的beam-search稍有不同
            out_puts_ids = self.poem_beam_search(token_ids, token_type_ids, self.word2ix, beam_size=beam_size, device=device)
        else :
             out_puts_ids = self.beam_search(token_ids, token_type_ids, self.word2ix, beam_size=beam_size, device=device)
        
        # 解码 得到相应输出
        return self.tokenizer.decode(out_puts_ids)
    
    def poem_beam_search(self, token_ids, token_type_ids, word2ix, beam_size=1, device="cpu"):
        """
        专门针对写诗的beam-search
        """
        ix2word = {v: k for k, v in word2ix.items()}
        sep_id = word2ix["[SEP]"]
        douhao_id = word2ix[","]# 逗号
        juhao_id = word2ix["。"]# 句号
        # 用来保存输出序列
        output_ids = [[]]
        word_list = {} # 保证不重复生成
        last_chars = []
        yayun_save = -1
        # 用来保存累计得分
        output_scores = torch.zeros(token_ids.shape[0], device=device)
        flag = 0 # 判断第一次遇到逗号
        for step in range(self.out_max_length):
            scores = self.forward(token_ids, token_type_ids, device=device)
            if step == 0:
                # 重复beam-size次 输入ids
                token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                token_type_ids = token_type_ids.view(1, -1).repeat(beam_size, 1)
            ## 计算log 分值 (beam_size, vocab_size)
            logit_score = torch.log_softmax(scores, dim=-1)[:, -1]
            logit_score = output_scores.view(-1, 1) + logit_score # 累计得分
            ## 取topk的时候我们是展平了然后再去调用topk函数
            # 展平
            logit_score = logit_score.view(-1)
            hype_score, hype_pos = torch.topk(logit_score, beam_size)
            indice1 = hype_pos / scores.shape[-1] # 行索引
            indice2 = hype_pos % scores.shape[-1] # 列索引

            # 下面需要更新一下输出了
            new_hype_scores = []
            new_hype_ids = []
            next_chars = [] # 用来保存新预测出来的一个字符,继续接到输入序列后面,再去预测新字符
            index = 0
            for i_1, i_2, score in zip(indice1, indice2, hype_score):
                i_1 = i_1.item()
                i_2 = i_2.item()
                score = score.item()
                if i_2 != douhao_id and i_2 != juhao_id:
                    if i_2 not in word_list.keys():
                        word_list[i_2] = 1
                    else :
                        # 加惩罚
                        word_list[i_2] += 1
                        score -= 1 * word_list[i_2]
                        hype_score[index] -= 1 * word_list[i_2]
                if flag == 0 and i_2 == douhao_id:
                    if len(last_chars) - 1 < index:
                        # 说明刚开始预测便预测到逗号了,上一个字符还没有存储
                        break
                    flag += 1
                    word = ix2word[last_chars[index]]# 找到上一个字符 记住其押韵情况
                    for i, each_yayun in enumerate(yayun_list):
                        if word in each_yayun:
                            yayun_save = i
                            break
                if i_2 == juhao_id:
                    word = ix2word[last_chars[index]]
                    # 找押韵 给奖励
                    if word in yayun_list[yayun_save]:
                        score += 5
                        hype_score[index] += 5
                    else:
                        score -= 2
                        hype_score[index] -= 2
                hype_id = output_ids[i_1] + [i_2] # 保存所有输出的序列,而不仅仅是新预测的单个字符

                if i_2 == sep_id:
                    # 说明解码到最后了
                    if score == torch.max(hype_score).item():
                        return hype_id[: -1]
                    else:
                        # 完成一个解码了,但这个解码得分并不是最高,因此的话需要跳过这个序列
                        beam_size -= 1
                else :
                    new_hype_ids.append(hype_id)
                    new_hype_scores.append(score)
                    next_chars.append(i_2) # 收集一下,需要连接到当前的输入序列之后
                index += 1

            output_ids = new_hype_ids

            last_chars = next_chars.copy() # 记录一下上一个字符
            output_scores = torch.tensor(new_hype_scores, dtype=torch.float32, device=device)
            # 现在需要重新构造输入数据了,用上一次输入连接上这次新输出的字符,再输入bert中预测新字符
            token_ids = token_ids[:len(output_ids)].contiguous() # 截取,因为要过滤掉已经完成预测的序列
            token_type_ids = token_type_ids[: len(output_ids)].contiguous()

            next_chars = torch.tensor(next_chars, dtype=torch.long, device=device).view(-1, 1)
            next_token_type_ids = torch.ones_like(next_chars, device=device)
            # 连接
            token_ids = torch.cat((token_ids, next_chars), dim=1)
            token_type_ids = torch.cat((token_type_ids, next_token_type_ids), dim=1)
            if beam_size < 1:
                break

        # 如果达到最大长度的话 直接把得分最高的输出序列返回把
        return output_ids[output_scores.argmax().item()] 

    def beam_search(self, token_ids, token_type_ids, word2ix, beam_size=1, device="cpu"):
        """
        beam-search操作
        """
        sep_id = word2ix["[SEP]"]
        # 用来保存输出序列
        output_ids = [[]]
        # 用来保存累计得分
        output_scores = torch.zeros(token_ids.shape[0], device=device)
        for step in range(self.out_max_length):
            
            scores = self.forward(token_ids, token_type_ids, device=device)
            if step == 0:
                # 重复beam-size次 输入ids
                token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                token_type_ids = token_type_ids.view(1, -1).repeat(beam_size, 1)
            ## 计算log 分值 (beam_size, vocab_size)
            logit_score = torch.log_softmax(scores, dim=-1)[:, -1]
            logit_score = output_scores.view(-1, 1) + logit_score # 累计得分
            ## 取topk的时候我们是展平了然后再去调用topk函数
            # 展平
            logit_score = logit_score.view(-1)
            hype_score, hype_pos = torch.topk(logit_score, beam_size)
            indice1 = hype_pos / scores.shape[-1] # 行索引
            indice2 = hype_pos % scores.shape[-1] # 列索引

            # 下面需要更新一下输出了
            new_hype_scores = []
            new_hype_ids = []
            # 为啥有这个[],就是因为要过滤掉结束的序列。
            next_chars = [] # 用来保存新预测出来的一个字符,继续接到输入序列后面,再去预测新字符
            for i_1, i_2, score in zip(indice1, indice2, hype_score):
                i_1 = i_1.item()
                i_2 = i_2.item()
                score = score.item()
                
                hype_id = output_ids[i_1] + [i_2] # 保存所有输出的序列,而不仅仅是新预测的单个字符

                if i_2 == sep_id:
                    # 说明解码到最后了
                    if score == torch.max(hype_score).item():
                        # 说明找到得分最大的那个序列了 直接返回即可
                        return hype_id[: -1]
                    else:
                        # 完成一个解码了,但这个解码得分并不是最高,因此的话需要跳过这个序列
                        beam_size -= 1
                else :
                    new_hype_ids.append(hype_id)
                    new_hype_scores.append(score)
                    next_chars.append(i_2) # 收集一下,需要连接到当前的输入序列之后

            output_ids = new_hype_ids
           
            output_scores = torch.tensor(new_hype_scores, dtype=torch.float32, device=device)
            # 现在需要重新构造输入数据了,用上一次输入连接上这次新输出的字符,再输入bert中预测新字符
            token_ids = token_ids[:len(output_ids)].contiguous() # 截取,因为要过滤掉已经完成预测的序列
            token_type_ids = token_type_ids[: len(output_ids)].contiguous()

            next_chars = torch.tensor(next_chars, dtype=torch.long, device=device).view(-1, 1)
            next_token_type_ids = torch.ones_like(next_chars, device=device)
            # 连接
            token_ids = torch.cat((token_ids, next_chars), dim=1)
            token_type_ids = torch.cat((token_type_ids, next_token_type_ids), dim=1)
            if beam_size < 1:
                break

        # 如果达到最大长度的话 直接把得分最高的输出序列返回把
        return output_ids[output_scores.argmax().item()] 
Exemple #13
0
class Trainer:
    def __init__(self):
        # 加载数据

        self.sents_src, self.sents_tgt = read_corpus(data_path)

        self.tokenier = Tokenizer(word2idx)
        # 判断是否有可用GPU
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        print("device: " + str(self.device))
        # 定义模型
        self.bert_model = load_bert(word2idx,
                                    model_name=model_name,
                                    model_class="sequence_labeling",
                                    target_size=len(target))
        ## 加载预训练的模型参数~
        self.bert_model.load_pretrain_params(model_path)
        # 将模型发送到计算设备(GPU或CPU)
        self.bert_model.set_device(self.device)
        # 声明需要优化的参数
        self.optim_parameters = list(self.bert_model.parameters())
        self.optimizer = torch.optim.Adam(self.optim_parameters,
                                          lr=lr,
                                          weight_decay=1e-3)
        # 声明自定义的数据加载器
        dataset = NERDataset(self.sents_src, self.sents_tgt)
        self.dataloader = DataLoader(dataset,
                                     batch_size=batch_size,
                                     shuffle=True,
                                     collate_fn=collate_fn)

    def train(self, epoch):
        # 一个epoch的训练
        self.bert_model.train()
        self.iteration(epoch, dataloader=self.dataloader, train=True)

    def save(self, save_path):
        """
        保存模型
        """
        self.bert_model.save_all_params(save_path)
        print("{} saved!".format(save_path))

    def iteration(self, epoch, dataloader, train=True):
        total_loss = 0
        start_time = time.time()  ## 得到当前时间
        step = 0
        for token_ids, token_type_ids, target_ids in tqdm(dataloader,
                                                          position=0,
                                                          leave=True):
            step += 1
            if step % 500 == 0:
                self.bert_model.eval()
                test_data = ["日寇在京掠夺文物详情。", "以书结缘,把欧美,港台流行的食品类食谱汇集一堂"]
                for text in test_data:
                    text, text_ids = self.tokenier.encode(text)
                    text = torch.tensor(text, device=self.device).view(1, -1)
                    out = self.bert_model(text).squeeze(0)
                    out_target = torch.argmax(out, dim=-1)
                    decode_target = [target[i.item()] for i in out_target]
                    print(decode_target)
                    # print(target[torch.argmax(self.bert_model(text)).item()])
                self.bert_model.train()

            # 因为传入了target标签,因此会计算loss并且返回
            predictions, loss = self.bert_model(token_ids, labels=target_ids)
            # 反向传播
            if train:
                # 清空之前的梯度
                self.optimizer.zero_grad()
                # 反向传播, 获取新的梯度
                loss.backward()
                # 用获取的梯度更新模型参数
                self.optimizer.step()

            # 为计算当前epoch的平均loss
            total_loss += loss.item()

        end_time = time.time()
        spend_time = end_time - start_time
        # 打印训练信息
        print("epoch is " + str(epoch) + ". loss is " + str(total_loss) +
              ". spend time is " + str(spend_time))
        # 保存模型
        self.save(model_save_path)
Exemple #14
0
                        model_name=model_name,
                        target_size=len(predicate2id))
 bert_model.eval()
 bert_model.set_device(device)
 #   ## 加载预训练的模型参数~
 checkpoint = torch.load(relation_extrac_model, map_location="cpu")
 # print(checkpoint)
 bert_model.load_all_params(model_path=relation_extrac_model, device=device)
 text = [
     "查尔斯·阿兰基斯(Charles Aránguiz),1989年4月17日出生于智利圣地亚哥,智利职业足球运动员,司职中场,效力于德国足球甲级联赛勒沃库森足球俱乐部",
     "李治即位后,萧淑妃受宠,王皇后为了排挤萧淑妃,答应李治让身在感业寺的武则天续起头发,重新纳入后宫",
     "《星空黑夜传奇》是连载于起点中文网的网络小说,作者是啤酒的罪孽"
 ]
 for d in text:
     with torch.no_grad():
         token_ids_test, segment_ids = tokenizer.encode(d, max_length=256)
         token_ids_test = torch.tensor(token_ids_test,
                                       device=device).view(1, -1)
         # 先预测subject
         pred_subject = bert_model.predict_subject(token_ids_test,
                                                   device=device)
         pred_subject = pred_subject.squeeze(0)
         subject_texts, subject_idss = search_subject(
             token_ids_test[0], pred_subject.cpu())
         if len(subject_texts) == 0:
             print("no subject predicted~")
         for sub_text, sub_ids in zip(subject_texts, subject_idss):
             print("subject is " + str(sub_text))
             sub_ids = torch.tensor(sub_ids, device=device).view(1, -1)
             # print("sub_ids shape is " + str(sub_ids))
             object_p_pred = bert_model.predict_object_predicate(
Exemple #15
0
class Trainer:
    def __init__(self):
        # 加载数据
        data_path = "./corpus/新闻标题文本分类/Train.txt"
        self.vocab_path = "./state_dict/roberta_wwm_vocab.txt"  # roberta模型字典的位置
        self.sents_src, self.sents_tgt = read_corpus(data_path)
        self.model_name = "roberta"  # 选择模型名字
        self.model_path = "./state_dict/roberta_wwm_pytorch_model.bin"  # roberta模型位置
        self.recent_model_path = ""  # 用于把已经训练好的模型继续训练
        self.model_save_path = "./bert_multi_classify_model.bin"
        self.batch_size = 16
        self.lr = 1e-5
        # 加载字典
        self.word2idx = load_chinese_base_vocab(self.vocab_path)
        self.tokenier = Tokenizer(self.word2idx)
        # 判断是否有可用GPU
        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        print("device: " + str(self.device))
        # 定义模型
        self.bert_model = load_bert(self.vocab_path,
                                    model_name=self.model_name,
                                    model_class="cls",
                                    target_size=len(target))
        ## 加载预训练的模型参数~
        load_model_params(self.bert_model, self.model_path)
        # 将模型发送到计算设备(GPU或CPU)
        self.bert_model.to(self.device)
        # 声明需要优化的参数
        self.optim_parameters = list(self.bert_model.parameters())
        self.optimizer = torch.optim.Adam(self.optim_parameters,
                                          lr=self.lr,
                                          weight_decay=1e-3)
        # 声明自定义的数据加载器
        dataset = NLUDataset(self.sents_src, self.sents_tgt, self.vocab_path)
        self.dataloader = DataLoader(dataset,
                                     batch_size=self.batch_size,
                                     shuffle=True,
                                     collate_fn=collate_fn)

    def train(self, epoch):
        # 一个epoch的训练
        self.bert_model.train()
        self.iteration(epoch, dataloader=self.dataloader, train=True)

    def save(self, save_path):
        """
        保存模型
        """
        torch.save(self.bert_model.state_dict(), save_path)
        print("{} saved!".format(save_path))

    def iteration(self, epoch, dataloader, train=True):
        total_loss = 0
        start_time = time.time()  ## 得到当前时间
        step = 0
        for token_ids, token_type_ids, target_ids in tqdm(dataloader,
                                                          position=0,
                                                          leave=True):
            step += 1
            if step % 2000 == 0:
                self.bert_model.eval()
                test_data = [
                    "编剧梁馨月讨稿酬六六何念助阵 公司称协商解决", "西班牙BBVA第三季度净利降至15.7亿美元",
                    "基金巨亏30亿 欲打开云天系跌停自救"
                ]
                for text in test_data:
                    text, text_ids = self.tokenier.encode(text)
                    text = torch.tensor(text, device=self.device).view(1, -1)
                    print(target[torch.argmax(self.bert_model(text)).item()])
                self.bert_model.train()

            token_ids = token_ids.to(self.device)
            token_type_ids = token_type_ids.to(self.device)
            target_ids = target_ids.to(self.device)
            # 因为传入了target标签,因此会计算loss并且返回
            predictions, loss = self.bert_model(
                token_ids,
                labels=target_ids,
            )
            # 反向传播
            if train:
                # 清空之前的梯度
                self.optimizer.zero_grad()
                # 反向传播, 获取新的梯度
                loss.backward()
                # 用获取的梯度更新模型参数
                self.optimizer.step()

            # 为计算当前epoch的平均loss
            total_loss += loss.item()

        end_time = time.time()
        spend_time = end_time - start_time
        # 打印训练信息
        print("epoch is " + str(epoch) + ". loss is " + str(total_loss) +
              ". spend time is " + str(spend_time))
        # 保存模型
        self.save(self.model_save_path)
Exemple #16
0
class ExtractDataset(Dataset):
    """
    针对特定数据集,定义一个相关的取数据的方式
    """
    def __init__(self, data, vocab_path) :
        ## 一般init函数是加载所有数据
        super(ExtractDataset, self).__init__()
        # 读原始数据
        # self.sents_src, self.sents_tgt = read_corpus(poem_corpus_dir)
        self.data = data
        self.word2idx = load_chinese_base_vocab(vocab_path)
        self.idx2word = {k: v for v, k in self.word2idx.items()}
        self.tokenizer = Tokenizer(self.word2idx)

    def __getitem__(self, i):
        ## 得到单个数据
        # print(i)
        d = self.data[i]
        token_ids, segment_ids = self.tokenizer.encode(d["text"], max_length=128)
        spoes = {}
        for s, p, o in d['spo_list']:
            s = self.tokenizer.encode(s)[0][1:-1]
            p = predicate2id[p]
            o = self.tokenizer.encode(o)[0][1:-1]
            s_idx = search(s, token_ids)
            o_idx = search(o, token_ids)
            if s_idx != -1 and o_idx != -1:
                s = (s_idx, s_idx + len(s) - 1)
                o = (o_idx, o_idx + len(o) - 1, p)
                if s not in spoes:
                    spoes[s] = []
                spoes[s].append(o)
        if spoes:
            # subject标签
            subject_labels = np.zeros((len(token_ids), 2))
            for s in spoes:
                subject_labels[s[0], 0] = 1
                subject_labels[s[1], 1] = 1
            # 随机选一个subject
            start, end = np.array(list(spoes.keys())).T
            start = np.random.choice(start)
            end = np.random.choice(end[end >= start])
            subject_ids = (start, end)
            # 对应的object标签
            object_labels = np.zeros((len(token_ids), len(predicate2id), 2))
            for o in spoes.get(subject_ids, []):
                object_labels[o[0], o[2], 0] = 1
                object_labels[o[1], o[2], 1] = 1
        
            output = {
                "token_ids": token_ids,
                "token_type_ids": segment_ids,
                "subject_labels": subject_labels,
                "subject_ids": subject_ids,
                "object_labels": object_labels,
            }
            return output
        else: 
            return self.__getitem__(i + 1)

    def __len__(self):

        return len(self.data)
Exemple #17
0
class SimBertModel(BasicBert):
    """
    """
    def __init__(self, word2ix, model_name="roberta", tokenizer=None):
        super(SimBertModel, self).__init__()
        self.word2ix = word2ix
        if tokenizer is None:
            self.tokenizer = Tokenizer(word2ix)
        else:
            self.tokenizer = tokenizer
        config = ""
        if model_name == "roberta":
            from bert_seq2seq.model.roberta_model import BertModel, BertConfig, BertLMPredictionHead
            config = BertConfig(len(word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(config, self.bert.embeddings.word_embeddings.weight)
        elif model_name == "bert":
            from bert_seq2seq.model.bert_model import BertConfig, BertModel, BertLMPredictionHead
            config = BertConfig(len(word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(config, self.bert.embeddings.word_embeddings.weight)
        else :
            raise Exception("model_name_err")
            
        self.hidden_dim = config.hidden_size
        self.vocab_size = len(word2ix)


    def compute_loss(self, predictions, labels, target_mask):
        loss1 = self.compute_loss_of_seq2seq(predictions, labels, target_mask)
        loss2 = self.compute_loss_of_similarity(predictions[:, 0]) ## 拿出cls向量
        return loss1 + loss2

    def compute_loss_of_seq2seq(self, predictions, labels, target_mask):
        predictions = predictions.view(-1, self.vocab_size)
        labels = labels.view(-1)
        target_mask = target_mask.view(-1).float()
        loss = nn.CrossEntropyLoss(ignore_index=0, reduction="none")
        return (loss(predictions, labels) * target_mask).sum() / target_mask.sum()  ## 通过mask 取消 pad 和句子a部分预测的影响

    def compute_loss_of_similarity(self, y_pred):

        y_true = self.get_labels_of_similarity(y_pred)  # 构建标签
        y_true = y_true.to(self.device)
        norm_a = torch.nn.functional.normalize(y_pred, dim=-1, p=2)
        # y_pred = K.l2_normalize(y_pred, axis=1)  # 句向量归一化
        similarities = norm_a.matmul(norm_a.t())

        # similarities = K.dot(y_pred, K.transpose(y_pred))  # 相似度矩阵
        similarities = similarities - (torch.eye(y_pred.shape[0]) * 1e12).to(self.device)  # 排除对角线
        similarities = similarities * 30  # scale
        similarities = similarities
        loss_f = nn.CrossEntropyLoss()
        loss = loss_f(similarities, y_true)
        # loss = K.categorical_crossentropy(
        #     y_true, similarities, from_logits=True
        # )
        return loss

    def get_labels_of_similarity(self, y_pred):
        idxs = torch.arange(0, y_pred.shape[0])
        idxs_1 = idxs[None, :]
        idxs_2 = (idxs + 1 - idxs % 2 * 2)[:, None]
        labels = (idxs_1 == idxs_2).float().argmax(dim=-1).long()
        return labels

    def forward(self, input_tensor, token_type_id, position_enc=None, labels=None):
        ## 传入输入,位置编码,token type id ,还有句子a 和句子b的长度,注意都是传入一个batch数据
        ##  传入的几个值,在seq2seq 的batch iter 函数里面都可以返回
        input_tensor = input_tensor.to(self.device)
        token_type_id = token_type_id.to(self.device)
        if position_enc is not None:
            position_enc = position_enc.to(self.device)
        if labels is not None :
            labels = labels.to(self.device)
        input_shape = input_tensor.shape
        batch_size = input_shape[0]
        seq_len = input_shape[1]
        ## 构建特殊的mask
        ones = torch.ones((1, 1, seq_len, seq_len), dtype=torch.float32, device=self.device)
        a_mask = ones.tril() # 下三角矩阵
        s_ex12 = token_type_id.unsqueeze(1).unsqueeze(2).float()
        s_ex13 = token_type_id.unsqueeze(1).unsqueeze(3).float()
        a_mask = (1.0 - s_ex12) * (1.0 - s_ex13) + s_ex13 * a_mask 
            
        enc_layers, _ = self.bert(input_tensor, position_ids=position_enc, token_type_ids=token_type_id, attention_mask=a_mask, 
                                    output_all_encoded_layers=True)
        squence_out = enc_layers[-1] ## 取出来最后一层输出

        predictions = self.decoder(squence_out)

        if labels is not None:
            ## 计算loss
            ## 需要构建特殊的输出mask 才能计算正确的loss
            # 预测的值不用取最后sep符号的结果 因此是到-1
            predictions = predictions[:, :-1].contiguous()
            target_mask = token_type_id[:, 1:].contiguous()
            loss = self.compute_loss(predictions, labels, target_mask)
            return predictions, loss 
        else :
            return predictions

    
    def generate(self, text, out_max_length=40, beam_size=1, is_poem=False, max_length=256):
        # 对 一个 句子生成相应的结果
        ## 通过输出最大长度得到输入的最大长度,这里问题不大,如果超过最大长度会进行截断
        self.out_max_length = out_max_length
        input_max_length = max_length - out_max_length
        # print(text)
        try:
            token_ids, token_type_ids = self.tokenizer.encode(text, max_length=input_max_length)
        except:
            # 可能是transformer的tokenizer
            tokenizer_out = self.tokenizer.encode_plus(text, max_length=input_max_length, truncation=True)
            token_ids = tokenizer_out["input_ids"]
            token_type_ids = tokenizer_out["token_type_ids"]
        token_ids = torch.tensor(token_ids, device=self.device).view(1, -1)
        token_type_ids = torch.tensor(token_type_ids, device=self.device).view(1, -1)
        if is_poem:## 古诗的beam-search稍有不同
            
            out_puts_ids = self.beam_search_poem(text, token_ids, token_type_ids, self.word2ix, beam_size=beam_size, device=self.device)
        else :   
            out_puts_ids = self.beam_search(token_ids, token_type_ids, self.word2ix, beam_size=beam_size, device=self.device)
        
        return self.tokenizer.decode(out_puts_ids.cpu().numpy())


    def sample_generate(self, text, out_max_length=40, top_k=30, top_p=0.0, max_length=256):
        input_max_length = max_length - out_max_length
        token_ids, token_type_ids = self.tokenizer.encode(text, max_length=input_max_length)

        token_ids = torch.tensor(token_ids, device=self.device, dtype=torch.long).view(1, -1)
        token_type_ids = torch.tensor(token_type_ids, device=self.device, dtype=torch.long).view(1, -1)
        device = self.device
        output_ids = []
        sep_id = self.word2ix["[SEP]"]
        with torch.no_grad(): 
            for step in range(out_max_length):
                scores = self.forward(token_ids, token_type_ids)
                logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0)
                logit_score[self.word2ix["[UNK]"]] = -float('Inf')
                filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p)
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
                if sep_id == next_token.item():
                    break
                output_ids.append(next_token.item())
                token_ids = torch.cat((token_ids, next_token.long().unsqueeze(0)), dim=1)
                token_type_ids = torch.cat([token_type_ids, torch.ones((1, 1), device=device, dtype=torch.long)], dim=1)

        return self.tokenizer.decode(np.array(output_ids))

    def beam_search(self, token_ids, token_type_ids, word2ix, beam_size=1, device="cpu"):
        """
        beam-search操作
        """
        sep_id = word2ix["[SEP]"]
        
        # 用来保存输出序列
        output_ids = torch.empty(1, 0, device=device, dtype=torch.long)
        # 用来保存累计得分
      
        with torch.no_grad(): 
            output_scores = torch.zeros(token_ids.shape[0], device=device)
            for step in range(self.out_max_length):
                if step == 0:
                    scores = self.forward(token_ids, token_type_ids)
                    # 重复beam-size次 输入ids
                    token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                    token_type_ids = token_type_ids.view(1, -1).repeat(beam_size, 1)
                else:
                    scores = self.forward(new_input_ids, new_token_type_ids)
                
                logit_score = torch.log_softmax(scores[:, -1], dim=-1)
                
                logit_score = output_scores.view(-1, 1) + logit_score # 累计得分
                ## 取topk的时候我们是展平了然后再去调用topk函数
                # 展平
                logit_score = logit_score.view(-1)
                hype_score, hype_pos = torch.topk(logit_score, beam_size)
                indice1 = (hype_pos // scores.shape[-1]) # 行索引
                indice2 = (hype_pos % scores.shape[-1]).long().reshape(-1, 1) # 列索引
               
                # 更新得分
                output_scores = hype_score
                output_ids = torch.cat([output_ids[indice1], indice2], dim=1).long()
                new_input_ids = torch.cat([token_ids, output_ids], dim=1)
                new_token_type_ids = torch.cat([token_type_ids, torch.ones_like(output_ids)], dim=1)

                end_counts = (output_ids == sep_id).sum(1)  # 统计出现的end标记
                best_one = output_scores.argmax()
                if end_counts[best_one] == 1:
                    # 说明出现终止了~
                    return output_ids[best_one][:-1]
                else :
                    # 保留未完成部分
                    flag = (end_counts < 1)  # 标记未完成序列
                    if not flag.all():  # 如果有已完成的
                        token_ids = token_ids[flag]
                        token_type_ids = token_type_ids[flag]
                        new_input_ids = new_input_ids[flag]
                        new_token_type_ids = new_token_type_ids[flag]
                        output_ids = output_ids[flag]  # 扔掉已完成序列
                        output_scores = output_scores[flag]  # 扔掉已完成序列
                        end_counts = end_counts[flag]  # 扔掉已完成end计数
                        beam_size = flag.sum()  # topk相应变化
    
            return output_ids[output_scores.argmax()]
class Seq2SeqModel(nn.Module):
    """
    """
    def __init__(self, word2ix, model_name="roberta"):
        super(Seq2SeqModel, self).__init__()
        self.word2ix = word2ix
        self.tokenizer = Tokenizer(word2ix)
        config = ""
        if model_name == "roberta":
            from bert_seq2seq.model.roberta_model import BertModel, BertConfig, BertLMPredictionHead
            config = BertConfig(len(word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        elif model_name == "bert":
            from bert_seq2seq.model.bert_model import BertConfig, BertModel, BertLMPredictionHead
            config = BertConfig(len(word2ix))
            self.bert = BertModel(config)
            self.decoder = BertLMPredictionHead(
                config, self.bert.embeddings.word_embeddings.weight)
        else:
            raise Exception("model_name_err")

        self.hidden_dim = config.hidden_size
        self.vocab_size = len(word2ix)

    def compute_loss(self, predictions, labels, target_mask):
        """
        target_mask : 句子a部分和pad部分全为0, 而句子b部分为1
        """
        predictions = predictions.view(-1, self.vocab_size)
        labels = labels.view(-1)
        target_mask = target_mask.view(-1).float()
        loss = nn.CrossEntropyLoss(ignore_index=0, reduction="none")
        return (loss(predictions, labels) * target_mask
                ).sum() / target_mask.sum()  ## 通过mask 取消 pad 和句子a部分预测的影响

    def forward(self,
                input_tensor,
                token_type_id,
                position_enc=None,
                labels=None,
                device="cpu"):
        ## 传入输入,位置编码,token type id ,还有句子a 和句子b的长度,注意都是传入一个batch数据
        ##  传入的几个值,在seq2seq 的batch iter 函数里面都可以返回
        input_shape = input_tensor.shape
        batch_size = input_shape[0]
        seq_len = input_shape[1]
        ## 构建特殊的mask
        ones = torch.ones((1, 1, seq_len, seq_len),
                          dtype=torch.float32,
                          device=device)
        a_mask = ones.tril()  # 下三角矩阵
        s_ex12 = token_type_id.unsqueeze(1).unsqueeze(2).float()
        s_ex13 = token_type_id.unsqueeze(1).unsqueeze(3).float()
        a_mask = (1.0 - s_ex12) * (1.0 - s_ex13) + s_ex13 * a_mask

        enc_layers, _ = self.bert(input_tensor,
                                  position_ids=position_enc,
                                  token_type_ids=token_type_id,
                                  attention_mask=a_maask,
                                  output_all_encoded_layers=True)
        squence_out = enc_layers[-1]  ## 取出来最后一层输出

        predictions = self.decoder(squence_out)

        if labels is not None:
            ## 计算loss
            ## 需要构建特殊的输出mask 才能计算正确的loss
            # 预测的值不用取最后sep符号的结果 因此是到-1
            predictions = predictions[:, :-1].contiguous()
            target_mask = token_type_id[:, 1:].contiguous()
            loss = self.compute_loss(predictions, labels, target_mask)
            return predictions, loss
        else:
            return predictions

    def generate(self,
                 text,
                 out_max_length=40,
                 beam_size=1,
                 device="cpu",
                 is_poem=False,
                 max_length=256):
        # 对 一个 句子生成相应的结果
        ## 通过输出最大长度得到输入的最大长度,这里问题不大,如果超过最大长度会进行截断
        self.out_max_length = out_max_length
        input_max_length = max_length - out_max_length
        # print(text)
        token_ids, token_type_ids = self.tokenizer.encode(
            text, max_length=input_max_length)
        token_ids = torch.tensor(token_ids, device=device).view(1, -1)
        token_type_ids = torch.tensor(token_type_ids,
                                      device=device).view(1, -1)
        if is_poem:  ## 古诗的beam-search稍有不同

            out_puts_ids = self.beam_search_poem(text,
                                                 token_ids,
                                                 token_type_ids,
                                                 self.word2ix,
                                                 beam_size=beam_size,
                                                 device=device)
        else:
            out_puts_ids = self.beam_search(token_ids,
                                            token_type_ids,
                                            self.word2ix,
                                            beam_size=beam_size,
                                            device=device)

        # 解码 得到相应输出
        # if err is False:
        #     return self.tokenizer.decode(out_puts_ids)

        return self.tokenizer.decode(out_puts_ids.cpu().numpy())

    # def poem_beam_search(self, token_ids, token_type_ids, word2ix, beam_size=1, device="cpu"):
    #     """
    #     专门针对写诗的beam-search
    #     """
    #     ix2word = {v: k for k, v in word2ix.items()}
    #     sep_id = word2ix["[SEP]"]
    #     douhao_id = word2ix[","]# 逗号
    #     juhao_id = word2ix["。"]# 句号
    #     # 用来保存输出序列
    #     output_ids = [[]]
    #     # word_list = {} # 保证不重复生成
    #     repeat_list = [[], [], [], [], []]
    #     last_chars = []
    #     yayun_save = -1
    #     # 用来保存累计得分
    #     output_scores = torch.zeros(token_ids.shape[0], device=device)
    #     flag = 0 # 判断第一次遇到逗号
    #     for step in range(self.out_max_length):
    #         scores = self.forward(token_ids, token_type_ids, device=device)
    #         if step == 0:
    #             # 重复beam-size次 输入ids
    #             token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
    #             token_type_ids = token_type_ids.view(1, -1).repeat(beam_size, 1)
    #         ## 计算log 分值 (beam_size, vocab_size)
    #         logit_score = torch.log_softmax(scores, dim=-1)[:, -1]
    #         logit_score = output_scores.view(-1, 1) + logit_score # 累计得分
    #         ## 取topk的时候我们是展平了然后再去调用topk函数
    #         # 展平
    #         logit_score = logit_score.view(-1)
    #         hype_score, hype_pos = torch.topk(logit_score, beam_size)
    #         indice1 = hype_pos // scores.shape[-1] # 行索引
    #         indice2 = hype_pos % scores.shape[-1] # 列索引

    #         # 下面需要更新一下输出了
    #         new_hype_scores = []
    #         new_hype_ids = []
    #         new_repeat_list = []
    #         next_chars = [] # 用来保存新预测出来的一个字符,继续接到输入序列后面,再去预测新字符
    #         index = 0
    #         for i_1, i_2, score in zip(indice1, indice2, hype_score):
    #             i_1 = i_1.item()
    #             i_2 = i_2.item()
    #             score = score.item()
    #             if i_2 != douhao_id and i_2 != juhao_id:
    #                 if i_2 in repeat_list[i_1]:
    #                 # 说明出现重复了
    #                 # 扣分
    #                     score -= 1
    #                     hype_score[i_1] -= 1
    #                 else :
    #                     repeat_list[i_1].append(i_2)

    #                 # if i_2 not in word_list.keys():
    #                 #     word_list[i_2] = 1
    #                 # else :
    #                 #     # 加惩罚
    #                 #     word_list[i_2] += 1
    #                 #     score -= 1 * word_list[i_2]
    #                 #     hype_score[index] -= 1 * word_list[i_2]
    #             if flag == 0 and i_2 == douhao_id and len(last_chars) != 0:

    #                 flag += 1
    #                 word = ix2word[last_chars[index]]# 找到上一个字符 记住其押韵情况
    #                 for i, each_yayun in enumerate(yayun_list):
    #                     if word in each_yayun:
    #                         yayun_save = i
    #                         break
    #             if i_2 == juhao_id and len(last_chars) != 0:

    #                 word = ix2word[last_chars[i_1]]
    #                 # 找押韵 给奖励
    #                 if word in yayun_list[yayun_save]:
    #                     score += 2
    #                     hype_score[i_1] += 2
    #                 else:
    #                     score -= 2
    #                     hype_score[i_1] -= 2
    #             hype_id = output_ids[i_1] + [i_2] # 保存所有输出的序列,而不仅仅是新预测的单个字符

    #             if i_2 == sep_id:
    #                 # 说明解码到最后了
    #                 if score == torch.max(hype_score).item():
    #                     return hype_id[: -1], False
    #                 else:
    #                     # 完成一个解码了,但这个解码得分并不是最高,因此的话需要跳过这个序列
    #                     beam_size -= 1
    #             else :
    #                 new_hype_ids.append(hype_id)
    #                 new_hype_scores.append(score)
    #                 next_chars.append(i_2) # 收集一下,需要连接到当前的输入序列之后
    #                 new_repeat_list.append(repeat_list[i_1])
    #             index += 1

    #         output_ids = new_hype_ids
    #         repeat_list = new_repeat_list ## 重复会扣分
    #         last_chars = next_chars.copy() # 记录一下上一个字符
    #         output_scores = torch.tensor(new_hype_scores, dtype=torch.float32, device=device)
    #         # 现在需要重新构造输入数据了,用上一次输入连接上这次新输出的字符,再输入bert中预测新字符
    #         token_ids = token_ids[:len(output_ids)].contiguous() # 截取,因为要过滤掉已经完成预测的序列
    #         token_type_ids = token_type_ids[: len(output_ids)].contiguous()

    #         next_chars = torch.tensor(next_chars, dtype=torch.long, device=device).view(-1, 1)
    #         next_token_type_ids = torch.ones_like(next_chars, device=device)
    #         # 连接
    #         token_ids = torch.cat((token_ids, next_chars), dim=1)
    #         token_type_ids = torch.cat((token_type_ids, next_token_type_ids), dim=1)
    #         if beam_size < 1:
    #             break

    #     # 如果达到最大长度的话 直接把得分最高的输出序列返回把
    #     err = False
    #     try:
    #         return output_ids[output_scores.argmax().item()], err
    #     except:
    #         err = True
    #         return "本次解码出现错误", err

    def beam_search(self,
                    token_ids,
                    token_type_ids,
                    word2ix,
                    beam_size=1,
                    device="cpu"):
        """
        beam-search操作
        """
        sep_id = word2ix["[SEP]"]

        # 用来保存输出序列
        output_ids = torch.empty(1, 0, device=device, dtype=torch.long)
        # 用来保存累计得分

        with torch.no_grad():
            output_scores = torch.zeros(token_ids.shape[0], device=device)
            for step in range(self.out_max_length):
                if step == 0:
                    scores = self.forward(token_ids,
                                          token_type_ids,
                                          device=device)
                    # 重复beam-size次 输入ids
                    token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                    token_type_ids = token_type_ids.view(1, -1).repeat(
                        beam_size, 1)
                else:
                    scores = self.forward(new_input_ids,
                                          new_token_type_ids,
                                          device=device)

                logit_score = torch.log_softmax(scores[:, -1], dim=-1)

                logit_score = output_scores.view(-1, 1) + logit_score  # 累计得分
                ## 取topk的时候我们是展平了然后再去调用topk函数
                # 展平
                logit_score = logit_score.view(-1)
                hype_score, hype_pos = torch.topk(logit_score, beam_size)
                indice1 = (hype_pos // scores.shape[-1])  # 行索引
                indice2 = (hype_pos % scores.shape[-1]).long().reshape(
                    -1, 1)  # 列索引

                # 更新得分
                output_scores = hype_score
                output_ids = torch.cat([output_ids[indice1], indice2],
                                       dim=1).long()
                new_input_ids = torch.cat([token_ids, output_ids], dim=1)
                new_token_type_ids = torch.cat(
                    [token_type_ids,
                     torch.ones_like(output_ids)], dim=1)

                end_counts = (output_ids == sep_id).sum(1)  # 统计出现的end标记
                best_one = output_scores.argmax()
                if end_counts[best_one] == 1:
                    # 说明出现终止了~
                    return output_ids[best_one][:-1]
                else:
                    # 保留未完成部分
                    flag = (end_counts < 1)  # 标记未完成序列
                    if not flag.all():  # 如果有已完成的
                        token_ids = token_ids[flag]
                        token_type_ids = token_type_ids[flag]
                        new_input_ids = new_input_ids[flag]
                        new_token_type_ids = new_token_type_ids[flag]
                        output_ids = output_ids[flag]  # 扔掉已完成序列
                        output_scores = output_scores[flag]  # 扔掉已完成序列
                        end_counts = end_counts[flag]  # 扔掉已完成end计数
                        beam_size = flag.sum()  # topk相应变化

            return output_ids[output_scores.argmax()]

    def beam_search_poem(self,
                         text,
                         token_ids,
                         token_type_ids,
                         word2ix,
                         beam_size=1,
                         device="cpu"):
        """
        beam-search操作
        """
        yayun_pos = []
        title = text.split("##")[0]
        if "五言律诗" in text:
            yayun_pos = [10, 22, 34, 46]
        elif "五言绝句" in text:
            yayun_pos = [10, 22]
        elif "七言律诗" in text:
            yayun_pos = [14, 30, 46, 62]
        elif "七言绝句" in text:
            yayun_pos = [14, 30]
        sep_id = word2ix["[SEP]"]
        douhao_id = word2ix[","]  # 逗号
        ix2word = {v: k for k, v in word2ix.items()}
        juhao_id = word2ix["。"]  # 句号
        repeat_word = [[] for i in range(beam_size)]
        # 用来保存输出序列
        output_ids = torch.empty(1, 0, device=device, dtype=torch.long)
        last_chars = torch.empty(1, 0, device=device, dtype=torch.long)
        yayun_chars = (-1) * torch.ones(beam_size, dtype=torch.long)
        start = 0
        with torch.no_grad():
            output_scores = torch.zeros(token_ids.shape[0], device=device)
            for step in range(self.out_max_length):
                if step == 0:
                    scores = self.forward(token_ids,
                                          token_type_ids,
                                          device=device)
                    # 重复beam-size次 输入ids
                    token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                    token_type_ids = token_type_ids.view(1, -1).repeat(
                        beam_size, 1)
                else:
                    scores = self.forward(new_input_ids,
                                          new_token_type_ids,
                                          device=device)

                logit_score = torch.log_softmax(scores[:, -1], dim=-1)

                for i, char in enumerate(last_chars):

                    for word in repeat_word[i]:
                        logit_score[i, word] -= 5
                    for word in title:
                        ix = word2ix.get(word, -1)
                        if ix != -1:
                            logit_score[i, ix] += 2

                if step in yayun_pos:
                    # print("step is " + str(step))
                    # print("yayun_chars is " + str(yayun_chars))
                    for i, char in enumerate(last_chars):
                        if yayun_chars[i].item() != -1:
                            yayuns = yayun_list[yayun_chars[i].item()]
                            for char in yayuns:
                                ix = word2ix.get(char, -1)
                                if ix != -1:
                                    # print("char is " + str(char))
                                    logit_score[i, ix] += 10

                logit_score = output_scores.view(-1, 1) + logit_score  # 累计得分
                ## 取topk的时候我们是展平了然后再去调用topk函数
                # 展平
                logit_score = logit_score.view(-1)
                hype_score, hype_pos = torch.topk(logit_score, beam_size)
                indice1 = (hype_pos // scores.shape[-1])  # 行索引
                indice2 = (hype_pos % scores.shape[-1]).long().reshape(
                    -1, 1)  # 列索引

                for index, each_out in zip(indice1, indice2):
                    index = index.item()
                    each_out = each_out.item()

                    if each_out in repeat_word[index]:
                        pass
                        # repeat_word[index].append(each_out)
                        # hype_score[index] -= 2 * repeat_word[index].count(each_out)
                    else:
                        repeat_word[index].append(each_out)

                    if start < beam_size and each_out == douhao_id and len(
                            last_chars) != 0:
                        start += 1
                        word = ix2word[
                            last_chars[index].item()]  # 找到上一个字符 记住其押韵情况
                        for i, each_yayun in enumerate(yayun_list):
                            if word in each_yayun:
                                yayun_chars[index] = i
                                break

                    # if each_out == juhao_id and len(last_chars) != 0:
                    #     word = ix2word[last_chars[index].item()]
                    #     if yayun_chars[index].item() != -1 and word in yayun_list[yayun_chars[index].item()]:
                    #         hype_score[index] += 10
                    #     else:
                    #         hype_score[index] -= 5

                # 更新得分
                output_scores = hype_score

                last_chars = indice2

                output_ids = torch.cat([output_ids[indice1], indice2],
                                       dim=1).long()
                new_input_ids = torch.cat([token_ids, output_ids], dim=1)
                new_token_type_ids = torch.cat(
                    [token_type_ids,
                     torch.ones_like(output_ids)], dim=1)

                end_counts = (output_ids == sep_id).sum(1)  # 统计出现的end标记
                best_one = output_scores.argmax()
                if end_counts[best_one] == 1:
                    # 说明出现终止了~
                    # print(repeat_word)
                    # print(yayun_chars)
                    return output_ids[best_one][:-1]
                else:
                    # 保留未完成部分
                    flag = (end_counts < 1)  # 标记未完成序列
                    if not flag.all():  # 如果有已完成的
                        token_ids = token_ids[flag]
                        token_type_ids = token_type_ids[flag]
                        last_chars = last_chars[flag]
                        yayun_chars = yayun_chars[flag]
                        new_input_ids = new_input_ids[flag]
                        new_token_type_ids = new_token_type_ids[flag]
                        output_ids = output_ids[flag]  # 扔掉已完成序列
                        output_scores = output_scores[flag]  # 扔掉已完成序列
                        end_counts = end_counts[flag]  # 扔掉已完成end计数
                        beam_size = flag.sum()  # topk相应变化
                        flag = flag.long()

                        new_repeat_word = []
                        for index, i in enumerate(flag):
                            if i.item() == 1:
                                new_repeat_word.append(repeat_word[index])

                        repeat_word = new_repeat_word

            # print(repeat_word)
            # print(yayun_chars)
            return output_ids[output_scores.argmax()]

    def beam_search_poem_v2(self,
                            text,
                            token_ids,
                            token_type_ids,
                            word2ix,
                            beam_size=1,
                            device="cpu"):
        """
        beam-search操作
        """
        yayun_pos = []
        if "五言律诗" in text:
            yayun_pos = [10, 22, 34, 46]
        elif "五言绝句" in text:
            yayun_pos = [10, 22]
        elif "七言律诗" in text:
            yayun_pos = [14, 30, 46, 62]
        elif "七言绝句" in text:
            yayun_pos = [14, 30]
        sep_id = word2ix["[SEP]"]
        douhao_id = word2ix[","]  # 逗号
        ix2word = {v: k for k, v in word2ix.items()}
        juhao_id = word2ix["。"]  # 句号
        repeat_word = []
        # 用来保存输出序列
        output_ids = torch.empty(1, 0, device=device, dtype=torch.long)
        last_chars = torch.empty(1, 0, device=device, dtype=torch.long)
        yayun_chars = (-1) * torch.ones(beam_size, dtype=torch.long)
        start = 0
        with torch.no_grad():
            output_scores = torch.zeros(token_ids.shape[0], device=device)
            for step in range(self.out_max_length):
                if step == 0:
                    scores = self.forward(token_ids,
                                          token_type_ids,
                                          device=device)
                    # 重复beam-size次 输入ids
                    token_ids = token_ids.view(1, -1).repeat(beam_size, 1)
                    token_type_ids = token_type_ids.view(1, -1).repeat(
                        beam_size, 1)
                else:
                    scores = self.forward(new_input_ids,
                                          new_token_type_ids,
                                          device=device)

                logit_score = torch.log_softmax(scores[:, -1], dim=-1)
                # if len(last_chars) != 0:
                #     logit_score[last_chars] -= 5
                for i, char in enumerate(last_chars):
                    logit_score[i, char] -= 2
                    for word in repeat_word:
                        logit_score[i, word] -= 1
                if step in yayun_pos:
                    # print("step is " + str(step))
                    # print("yayun_chars is " + str(yayun_chars))
                    for i, char in enumerate(last_chars):
                        if yayun_chars[i].item() != -1:
                            yayuns = yayun_list[yayun_chars[i].item()]
                            for char in yayuns:
                                ix = word2ix.get(char, -1)
                                if ix != -1:
                                    # print("char is " + str(char))
                                    logit_score[i, ix] += 3
                logit_score = output_scores.view(-1, 1) + logit_score  # 累计得分
                ## 取topk的时候我们是展平了然后再去调用topk函数
                # 展平
                logit_score = logit_score.view(-1)
                hype_score, hype_pos = torch.topk(logit_score, beam_size)
                indice1 = (hype_pos // scores.shape[-1])  # 行索引
                indice2 = (hype_pos % scores.shape[-1]).long().reshape(
                    -1, 1)  # 列索引

                for index, each_out in zip(indice1, indice2):
                    index = index.item()
                    each_out = each_out.item()

                    if each_out in repeat_word:
                        pass
                        # repeat_word[index].append(each_out)
                        # hype_score[index] -= 2 * repeat_word[index].count(each_out)
                    else:
                        repeat_word.append(each_out)

                    if start < beam_size and each_out == douhao_id and len(
                            last_chars) != 0:
                        start += 1
                        word = ix2word[
                            last_chars[index].item()]  # 找到上一个字符 记住其押韵情况
                        for i, each_yayun in enumerate(yayun_list):
                            if word in each_yayun:
                                yayun_chars[index] = i
                                break

                    # if each_out == juhao_id and len(last_chars) != 0:
                    #     word = ix2word[last_chars[index].item()]
                    #     if yayun_chars[index].item() != -1 and word in yayun_list[yayun_chars[index].item()]:
                    #         hype_score[index] += 10
                    #     else:
                    #         hype_score[index] -= 5

                # 更新得分
                output_scores = hype_score

                last_chars = indice2

                output_ids = torch.cat([output_ids[indice1], indice2],
                                       dim=1).long()
                new_input_ids = torch.cat([token_ids, output_ids], dim=1)
                new_token_type_ids = torch.cat(
                    [token_type_ids,
                     torch.ones_like(output_ids)], dim=1)

                end_counts = (output_ids == sep_id).sum(1)  # 统计出现的end标记
                best_one = output_scores.argmax()
                if end_counts[best_one] == 1:
                    # 说明出现终止了~
                    # print(repeat_word)
                    # print(yayun_chars)
                    return output_ids[best_one]
                else:
                    # 保留未完成部分
                    flag = (end_counts < 1)  # 标记未完成序列
                    if not flag.all():  # 如果有已完成的
                        token_ids = token_ids[flag]
                        token_type_ids = token_type_ids[flag]
                        last_chars = last_chars[flag]
                        yayun_chars = yayun_chars[flag]
                        new_input_ids = new_input_ids[flag]
                        new_token_type_ids = new_token_type_ids[flag]
                        output_ids = output_ids[flag]  # 扔掉已完成序列
                        output_scores = output_scores[flag]  # 扔掉已完成序列
                        end_counts = end_counts[flag]  # 扔掉已完成end计数
                        beam_size = flag.sum()  # topk相应变化
                        flag = flag.long()

            # print(repeat_word)
            # print(yayun_chars)
            return output_ids[output_scores.argmax()]
Exemple #19
0
    "游戏", "娱乐"
]

cls_model = "./state_dict/bert_multi_classify_model.bin"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

if __name__ == "__main__":
    vocab_path = "./state_dict/roberta_wwm_vocab.txt"  # roberta模型字典的位置
    model_name = "roberta"  # 选择模型名字
    # 加载字典
    word2idx = load_chinese_base_vocab(vocab_path, simplfied=False)
    tokenizer = Tokenizer(word2idx)
    # 定义模型
    bert_model = load_bert(word2idx,
                           model_name=model_name,
                           model_class="cls",
                           target_size=len(target))
    bert_model.to(device)
    bert_model.eval()
    ## 加载训练的模型参数~
    load_recent_model(bert_model, recent_model_path=cls_model, device=device)
    test_data = [
        "编剧梁馨月讨稿酬六六何念助阵 公司称协商解决", "西班牙BBVA第三季度净利降至15.7亿美元",
        "基金巨亏30亿 欲打开云天系跌停自救"
    ]
    for text in test_data:
        with torch.no_grad():
            text, text_ids = tokenizer.encode(text)
            text = torch.tensor(text, device=device).view(1, -1)
            print(target[torch.argmax(bert_model(text)).item()])
Exemple #20
0
class GPT2(BasicGPT):
    def __init__(self, word2ix, tokenizer=None):
        super().__init__()
        self.word2ix = word2ix
        if tokenizer is not None:
            self.tokenizer = tokenizer
        else:
            self.tokenizer = Tokenizer(word2ix)
        self.config = GPT2Config(len(word2ix))
        self.model = GPT2LMHeadModel(self.config)
    
    def sample_generate(self, text, input_max_length=256, out_max_length=200, top_k=30, top_p=0.0, add_eos=False):
        
        token_ids, _ = self.tokenizer.encode(text, max_length=input_max_length)
        if not add_eos:
            token_ids = torch.tensor(token_ids, device=self.device, dtype=torch.long)[:-1].view(1, -1)
        else:
            token_ids = torch.tensor(token_ids, device=self.device, dtype=torch.long).view(1, -1)

        output_ids = []
        sep_id = self.word2ix["[SEP]"]
        with torch.no_grad(): 
            for step in range(out_max_length):
                _, scores = self.model(token_ids)
                logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0)
                logit_score[self.word2ix["[UNK]"]] = -float('Inf')
                filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p)
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
                if sep_id == next_token.item():
                    break
                output_ids.append(next_token.item())
                token_ids = torch.cat((token_ids, next_token.long().unsqueeze(0)), dim=1)

        return self.tokenizer.decode(np.array(output_ids))

    def sample_generate_english(self, text, input_max_length=256, out_max_length=200, top_k=30, top_p=0.0, add_eos=False):

        token_ids = self.tokenizer.encode(text, max_length=input_max_length, truncation=True)
        if add_eos:
            token_ids = token_ids + [self.word2ix["<EOS>"]]
        token_ids = torch.tensor(token_ids, device=self.device, dtype=torch.long).view(1, -1)
        output_ids = []
        sep_id = self.word2ix["<EOS>"]
        with torch.no_grad():
            for step in range(out_max_length):
                _, scores = self.model(token_ids)
                # print(scores.shape)
                logit_score = torch.log_softmax(scores[:, -1], dim=-1).squeeze(0)
                # print(logit_score.shape)
                logit_score[self.word2ix["unk"]] = -float('Inf')
                filtered_logits = top_k_top_p_filtering(logit_score, top_k=top_k, top_p=top_p)
                next_token = torch.multinomial(F.softmax(filtered_logits, dim=-1), num_samples=1)
                if sep_id == next_token.item():
                    break
                    # pass
                output_ids.append(next_token.item())
                token_ids = torch.cat((token_ids, next_token.long().unsqueeze(0)), dim=1)

        return self.tokenizer.decode(output_ids)


    def _make_causal_mask(self, input_ids_shape: torch.Size):
   
        bsz, tgt_len = input_ids_shape
        mask = torch.full((tgt_len, tgt_len), 0.0).to(self.device)
        mask_cond = torch.arange(mask.size(-1)).to(self.device)
        mask.masked_fill_(mask_cond < (mask_cond + 1).view(mask.size(-1), 1), 1.0)
    
        return mask[None, None, :, :].expand(bsz, 1, tgt_len, tgt_len)

    
    def forward(self, x, labels=None):
        if labels is not None:
            labels = labels.to(self.device)
        x = x.to(self.device)
        # input_ids = torch.tensor([[1, 2, 3, 5, -100], [4, 5, 6, -100, -100]])
        attention_mask = self._make_causal_mask(x.shape)
        pad_mask = (labels != -100).float()
        attention_mask = attention_mask * pad_mask.unsqueeze(1).unsqueeze(1)

        loss, lm_logit = self.model(x, labels=labels, attention_mask=attention_mask)
       
        return loss, lm_logit