Exemple #1
0
    def setUp(self):
        """
        Set up problem.
        """
        super(Test_prob_on_emulated_samples_10to4, self).setUp()

        calcP.prob_on_emulated_samples(self.disc)
    def setUp(self):
        """
        Set up problem.
        """
        super(Test_prob_on_emulated_samples_10to4, self).setUp()

        calcP.prob_on_emulated_samples(self.disc)
Exemple #3
0
 def setUp(self):
     """
     Set up problem.
     """
     super(Test_prob_on_emulated_samples_3to1, self).setUp()
     calcP.prob_on_emulated_samples(self.disc)
     self.P_emulate_ref = np.loadtxt(data_path+"/3to1_prob_emulated.txt.gz")
Exemple #4
0
def postprocess(station_nums, ref_num):

    filename = 'P_q' + str(station_nums[0] + 1) + \
        '_q' + str(station_nums[1] + 1)
    if len(station_nums) == 3:
        filename += '_q' + str(station_nums[2] + 1)
    filename += '_ref_' + str(ref_num + 1)

    data = Q[:, station_nums]
    output_sample_set = sample.sample_set(data.shape[1])
    output_sample_set.set_values(data)
    q_ref = Q_ref[ref_num, station_nums]

    # Create Simple function approximation
    # Save points used to parition D for simple function approximation and the
    # approximation itself (this can be used to make close comparisions...)
    output_probability_set = sfun.regular_partition_uniform_distribution_rectangle_scaled(
        output_sample_set,
        q_ref,
        rect_scale=0.15,
        cells_per_dimension=np.ones((data.shape[1], )))

    num_l_emulate = 1e4
    set_emulated = bsam.random_sample_set('r', lam_domain, num_l_emulate)
    my_disc = sample.discretization(input_sample_set,
                                    output_sample_set,
                                    output_probability_set,
                                    emulated_input_sample_set=set_emulated)

    print("Finished emulating lambda samples")

    # Calculate P on lambda emulate
    print("Calculating prob_on_emulated_samples")
    calcP.prob_on_emulated_samples(my_disc)
    sample.save_discretization(my_disc, filename,
                               "prob_on_emulated_samples_solution")

    # Calclate P on the actual samples with assumption that voronoi cells have
    # equal size
    input_sample_set.estimate_volume_mc()
    print("Calculating prob")
    calcP.prob(my_disc)
    sample.save_discretization(my_disc, filename, "prob_solution")

    # Calculate P on the actual samples estimating voronoi cell volume with MC
    # integration
    calcP.prob_with_emulated_volumes(my_disc)
    print("Calculating prob_with_emulated_volumes")
    sample.save_discretization(my_disc, filename,
                               "prob_with_emulated_volumes_solution")
Exemple #5
0
def postprocess(station_nums, ref_num):
    
    filename = 'P_q'+str(station_nums[0]+1)+'_q'
    if len(station_nums) == 3:
        filename += '_q'+str(station_nums[2]+1)
    filename += '_ref_'+str(ref_num+1)

    data = Q[:, station_nums]
    output_sample_set = sample.sample_set(data.shape[1])
    output_sample_set.set_values(data)
    q_ref = Q_ref[ref_num, station_nums]

    # Create Simple function approximation
    # Save points used to parition D for simple function approximation and the
    # approximation itself (this can be used to make close comparisions...)
    output_probability_set = sfun.regular_partition_uniform_distribution_rectangle_scaled(\
            output_sample_set, q_ref, rect_scale=0.15,
            cells_per_dimension=np.ones((data.shape[1],)))

    num_l_emulate = 1e4
    set_emulated = bsam.random_sample_set('r', lam_domain, num_l_emulate)
    my_disc = sample.discretization(input_sample_set, output_sample_set,
            output_probability_set, emulated_input_sample_set=set_emulated)

    print "Finished emulating lambda samples"

    # Calculate P on lambda emulate
    print "Calculating prob_on_emulated_samples"
    calcP.prob_on_emulated_samples(my_disc)
    sample.save_discretization(my_disc, filename, "prob_on_emulated_samples_solution")

    # Calclate P on the actual samples with assumption that voronoi cells have
    # equal size
    input_sample_set.estimate_volume_mc()
    print "Calculating prob"
    calcP.prob(my_disc)
    sample.save_discretization(my_disc, filename, "prob_solution")

    # Calculate P on the actual samples estimating voronoi cell volume with MC
    # integration
    calcP.prob_with_emulated_volumes(my_disc)
    print "Calculating prob_with_emulated_volumes"
    sample.save_discretization(my_disc, filename, "prob_with_emulated_volumes_solution")