import pickle from biasedPerceptron import BiasedPerceptron, diff import anotherStatus as fw import calling_station import betting_station import time import numpy as np name = 'frenzy_perceptron_.0005_vs_frenzy.p' start = time.time() ALPHA = 0.0005 LAMBS = [0.8, 0.85, 0.9, 0.95, 1] n_train = 500000 csBot = calling_station.Calling_station() bsBot = betting_station.Betting_station() for LAMB in LAMBS: net = BiasedPerceptron(fw.n_in, fw.n_hidden, fw.n_out, alpha=ALPHA, lamb=LAMB, randomInit=True) net2 = BiasedPerceptron(fw.n_in, fw.n_hidden, fw.n_out, alpha=ALPHA, lamb=LAMB, randomInit=True) auto = fw.AnotherAutoPlayer(net, name="superbot") ai = fw.AnotherAutoPlayer(net2, name='cpu', frenzy=1)
import pickle import UnbiasedNet import anotherStatus as fw import calling_station import betting_station import time import numpy as np name = 'frenzy_vs_betting.p' start = time.time() ALPHA = 0.001 LAMBS = [0.75] n_train = [] callBot = calling_station.Calling_station() bsbot = betting_station.Betting_station() for LAMB in LAMBS: net = UnbiasedNet.NeuralNet(fw.n_in, fw.n_hidden, fw.n_out, alpha=ALPHA, lamb=LAMB, randomInit=True) auto = fw.AnotherAutoPlayer(net, name="superbot") distance = 10 i = 0 while distance > 0.0002: oldnet = auto.net.deepcopy() auto.net.alpha /= 1.01 auto.train(1000, bsbot, debug=0, frenzy=1)