Exemple #1
0
    def plot_SQ(self):
        ks = self.ks
        param = self.param
        length = self.length
        alpha = self.alpha
        m = 5.0 / 3
        ie0 = 5.0

        dot_s = np.arange(0, 1.0, 0.01)
        for k in range(0, len(ks)):
            ie1 = ie0 / ks[k]
            min_q = ie1 * length
            max_q = ie0 * length
            min_s = m / (m + 1) * (ie1 * length**(m + 1) / alpha) * (1 / m)
            max_s = m / (m + 1) * (ie0 * length**(m + 1) / alpha) * (1 / m)

            _str = 'k=' + str(ks[k])
            p = param[_str]
            sq = bf.gen(dot_s, p)
            sq[:, 1] = sq[:, 1] * (max_q - min_q) + min_q
            sq[:, 0] = sq[:, 0] * (max_s - min_s) + min_s

            plt.plot(sq[:, 1], sq[:, 0])
            plt.plot(self.curve[k][:, 0], self.curve[k][:, 1], '--b')

        plt.savefig('Falling_Fitting.png')
        plt.close()
Exemple #2
0
    def SQ_curve(self, k):
        P = self.get_P(k)
        t = np.arange(0., 1.00001, 1. / 100)

        curve = bf.gen(t, len(P) - 1, P)

        return curve
Exemple #3
0
    def plot_SQ(self):
        #  max_k = self.max_k
        param = self.param
        length = self.length
        alpha = self.alpha
        ks = self.ks
        m = 5.0 / 3
        ie0 = 5.0

        dot_s = np.arange(0, 1.0, 0.01)
        for k in range(0, len(ks)):
            ie1 = ie0 * ks[k]
            max_q = ie1 * length
            max_s = m / (m + 1) * (ie1 * length**(m + 1) / alpha) * (1 / m)
            min_s = m / (m + 1) * (ie0 * length**(m + 1) / alpha) * (1 / m)

            p = param[k]
            dot_s = np.arange(0, 1.001, 0.01)
            dot_q = bf.gen(dot_s, 6, p)

            dot_s = (dot_s * (max_s - min_s) / max_s + min_s / max_s) * max_s
            q = (dot_q * (1.0 - 1.0 / k) + 1.0 / k) * max_q

            plt.plot(q, dot_s)

        plt.savefig('Rising_Fitting.png')
        plt.close()
Exemple #4
0
    def interpCurve(self, p):
        Pts, midPoint = self.nearestNeighbor(p)
        Pts = np.array(Pts)

        midPoint = np.array(midPoint)
        """
        xrbf = Rbf(Pts[:, 0], Pts[:, 1], Pts[:, 2], Pts[:, 3], midPoint[:, 0])
        yrbf = Rbf(Pts[:, 0], Pts[:, 1], Pts[:, 2], Pts[:, 3], midPoint[:, 1])

        P1X = xrbf(p[0], p[1], p[2], p[3])*p[0]
        P1Y = yrbf(p[0], p[1], p[2], p[3])*p[1]"""

        P1X, P1Y = self.inverseDist(p, Pts, midPoint)

        P1X = P1X*p[0]
        P1Y = P1Y*p[1]

        print(midPoint)
        print(P1X, P1Y)

        curvePoints = [[p[0], p[1]], [P1X, P1Y], [p[2], p[3]]]

        T = np.arange(0., 1.0001, 1./100)
        curve = bezeir_fit.gen(T, self.degC, np.array(curvePoints))
        return curve, T
Exemple #5
0
    def plot_norm_SQ(self):
        param = self.param

        for j in range(0, len(param)):
            t = np.arange(0, 1.00001, 1. / 100)
            p = param[j]
            curve = bf.gen(t, len(p) - 1, p)
            _curve = np.array(self.curve[j])

            plt.plot(curve[:, 0], curve[:, 1], '-r')
            plt.plot(_curve[:, 0], _curve[:, 1], '--b')

        plt.savefig('Falling_Fitting.png', dpi=150)
        plt.close()
Exemple #6
0
    def interpCurve(self, qBD, sBD):
        PPlist = self.PPlist

        curvePoints = [[1, 1]]
        for i in range(0, len(PPlist)):
            fX = PPlist[i][0]
            fY = PPlist[i][1]

            p = [fX(qBD, sBD), fY(qBD, sBD)]
            curvePoints.append(p)

        # p[-1] = [qBD, sBD]
        T = np.arange(0., 1.0001, 1./100)

        curve = bezeir_fit.gen(T, self.degC, np.array(curvePoints))
        return curve, T
Exemple #7
0
def run():
    REC = pickle.load(open('Steady_fit/ks1_Rise_CurveRec.flow'))
    param = pickle.load(open('Steady_fit/fit_1_RiseLimb.pick'))
    key_str = 'k=10.0'
    sto = REC['S'][key_str]
    out = REC['Q'][key_str]

    sto = sto[0:len(out), :]

    out[:, 1] = (out[:, 1] - min(out[:, 1])) / (1.0 - min(out[:, 1]))
    sto[:, 1] = (sto[:, 1] - min(sto[:, 1])) / (1.0 - min(sto[:, 1]))
    lst = np.arange(1, len(out), len(out) / 10)
    lst = lst.tolist()
    lst.pop(-1)

    plt.figure
    plt.plot(out[:, 1],
             sto[0:len(out), 1],
             color='dodgerblue',
             lw=3.0,
             label='Analytic')

    p = param['param']
    p = p['k=10.0']

    new_t = np.arange(0, 1.001, 0.01)
    new_t = new_t.tolist()
    new_t.append(1.0)
    new_t = np.array(new_t)
    y2 = bf.gen(new_t, 6, p)

    plt.plot(y2[:, 1], y2[:, 0], '--r', label='Bezeir-fit')
    counter = 0
    for point in p:
        plt.plot(point[0], point[1], marker='s', color='k')
        plt.text(point[0] + 0.02, point[1] + 0.01, 'P' + str(counter))
        counter += 1
    plt.legend(loc=4)
    plt.xlabel('$Q_{{}*{}}$')
    plt.ylabel('$S_{{}*{}}$')
    plt.title('k=10 Analytical S-Q fit (n=6)')
    plt.savefig('s-q fit test.png')
    plt.close()
Exemple #8
0
    def bzCurve(self):
        # Start from zero
        self.steady_q.tolist().insert(0, 0.)
        self.steady_s.tolist().insert(0, 0.)

        t = np.arange(0., 1.0001, 1. / 10)
        Q = np.interp(t, self.ie / max(self.ie), self.steady_q)
        S = np.interp(t, self.ie / max(self.ie), self.steady_s)

        std_SQ = np.array([zip(Q, S)])[0]
        p, t = bf.fit(std_SQ, 2, 1.0E-8)
        print(p)

        p[0] = [0, 0]
        p[-1] = std_SQ[-1]
        t = np.arange(0., 1.0001, 1. / 100)
        f_std_SQ = bf.gen(t, 2, p)

        return f_std_SQ, t
Exemple #9
0
    def eff_coeifficent(self):
        self.eff = list()
        param = self.param

        for j in range(0, len(param)):
            t = np.arange(0, 1.00001, 1. / 100)
            p = param[j]
            curve = bf.gen(t, len(p) - 1, p)
            _curve = np.array(self.curve[j])

            for j in range(0, len(_curve[:, 1])):
                if _curve[j, 1] < 0:
                    _curve[j, 1] = 0.

            fQ = interp1d(curve[:, 1], curve[:, 0])
            Q = fQ(_curve[:, 1])

            eff = 1 - np.sum((Q - _curve[:, 0])**2) / np.sum(
                (Q - np.mean(_curve[:, 0]))**2)
            self.eff.append(eff)
        plt.plot(1. / np.array(self.ks), self.eff, 'b+')
Exemple #10
0
    def plot_norm_SQ(self):
        #  max_k = self.max_k
        param = self.param
        ks = self.header
        curve = self.curve

        dot_s = np.arange(0, 0.981, 0.01)
        dot_s = dot_s.tolist()
        dot_s.append(1.0)
        dot_s - np.array(dot_s)
        for k in range(0, len(ks)):
            p = param[k]
            out_s = curve[k][:, 1]
            out_q = curve[k][:, 0]
            dot_q = bf.gen(dot_s, self.bez_deg, p)

            plt.plot(dot_q[:, 1], dot_q[:, 0], '-b')
            plt.plot(out_q[:, 1], out_s[0:len(out_q[:, 1]), 1], '--r')

        plt.savefig('Falling_Fitting.png', dpi=150)
        plt.close()
Exemple #11
0
def testFitSDR():
    a = pickle.load(open('SDRrec.pick', 'r'))
    header = a['header']
    PT = a['PT']

    Plist = list()
    p2List = list()
    p3List = list()
    for j in range(0, len(PT)):
        Plist.append(PT[j][0])
    for k in range(0, len(Plist)):
        p2List.append(Plist[k][1])
        p3List.append(Plist[k][2])
    p2List = np.array(p2List)
    p3List = np.array(p3List)

    P2, T2 = bezeir_fit.fit(p2List, 4, 1.0E-8)
    P3, T3 = bezeir_fit.fit(p3List, 4, 1.0E-8)

    T = np.arange(0., 1.001, 1./50)
    P2_fit = bezeir_fit.gen(T, 4, P2)
    P3_fit = bezeir_fit.gen(T, 4, P3)

    plt.figure
    plt.plot(P2_fit[:, 0], P2_fit[:, 1], label='P2', lw=3.0)
    plt.plot(p2List[:, 0], p2List[:, 1], ls='--', lw=3.0)
    plt.plot(P3_fit[:, 0], P3_fit[:, 1], label='P3')
    plt.plot(p3List[:, 0], p3List[:, 1], ls='--')
    plt.legend()
    plt.savefig('p2p3fit.png')
    plt.close()

    t2 = np.interp([1.277], np.fliplr([header])[0], np.fliplr([T2])[0])
    t3 = np.interp([1.277], np.fliplr([header])[0], np.fliplr([T3])[0])
    _p2 = bezeir_fit.gen(t2, 4, P2)[0]
    _p3 = bezeir_fit.gen(t3, 4, P3)[0]

    _dat1 = bezeir_fit.gen(T, 2, [[1, 1], _p2, _p3])
    _dat2 = bezeir_fit.gen(T, 2, PT[9][0])
    plt.figure
    plt.plot(_dat1[:, 0], _dat1[:, 1], label='gen')
    plt.plot(_dat2[:, 0], _dat2[:, 1], label='rec')
    plt.legend()
    plt.show()
Exemple #12
0
def run():
    _file = "/home/room801/anaoverland/Steady_fit/ks1_Rise_CurveRec.flow"
    RiseRec = pickle.load(open(_file, 'r'))
    _file = "/home/room801/anaoverland/Steady_fit/ks1_Fall_CurveRec.flow"
    FallRec = pickle.load(open(_file, 'r'))

    RiseParam = pickle.load(
        open("/home/room801/anaoverland/Steady_fit/fit_1_RiseLimb.pick", 'r'))
    FallParam = pickle.load(
        open("/home/room801/anaoverland/Steady_fit/fit_1_FallLimb.pick", 'r'))
    plt.figure

    ks = [
        1.01, 1.05, 1.1, 1.2, 1.6, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0,
        8.0, 9.0, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0,
        100.0
    ]
    #  ks = [2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 15.0, 20.0]
    k_and_NS = list()
    for k in ks:
        keyStr = 'k=' + str(float(k))
        out_s = RiseRec['S'][keyStr]
        out_q = RiseRec['Q'][keyStr]

        #  Normalized curve to [0, 1]
        out_s[:, 1] = (out_s[:, 1] - min(out_s[:, 1])) / (max(out_s[:, 1]) -
                                                          min(out_s[:, 1]))
        out_q[:, 1] = (out_q[:, 1] - min(out_q[:, 1])) / (max(out_q[:, 1]) -
                                                          min(out_q[:, 1]))

        #  Interpolation on flowrate record
        standard_s = np.arange(0, 1.001, 0.01)
        standard_q = np.interp(standard_s, out_s[0:len(out_q), 1], out_q[:, 1])
        rec_sq = np.zeros([len(standard_s), 2])
        rec_sq[:, 0] = standard_s
        rec_sq[:, 1] = standard_q

        t = bf.aff_angle(rec_sq)
        P = RiseParam.ref_points(k)
        sq = bf.gen(t, 6, P)

        R2 = 0.0
        for j in range(0, len(sq)):
            R2 = R2 + ((sq[j, 0] - rec_sq[j, 0])**2 +
                       (sq[j, 1] - rec_sq[j, 1])**2)
        R2 = sqrt(R2)

        plt.plot(out_q[:, 1],
                 out_s[0:len(out_q), 1],
                 color='aqua',
                 linewidth='1.2')
        plt.plot(sq[:, 1], sq[:, 0], '-b')
        print k, R2
        k_and_NS.append([k, R2])

    for k in ks:
        keyStr = 'k=' + str(float(k))
        out_s = FallRec['S'][keyStr]
        out_q = FallRec['Q'][keyStr]

        #  Normalization to [0, 1]
        out_s[:, 1] = (out_s[:, 1] - min(out_s[:, 1])) / (max(out_s[:, 1]) -
                                                          min(out_s[:, 1]))
        out_q[:, 1] = (out_q[:, 1] - min(out_q[:, 1])) / (max(out_q[:, 1]) -
                                                          min(out_q[:, 1]))

        standard_s = np.arange(0, 1.001, 0.01)
        standard_q = np.interp(standard_s, mat_flip(out_s[0:len(out_q), 1]),
                               mat_flip(out_q[:, 1]))

        rec_sq = np.zeros([len(standard_s), 2])
        rec_sq[:, 0] = mat_flip(standard_s)
        rec_sq[:, 1] = mat_flip(standard_q)

        t = bf.aff_angle(rec_sq)
        P = FallParam.ref_points(1. / k)
        P[0] = [1.0, 1.0]
        P[-1] = [0.0, 0.0]
        sq = bf.gen(t, 6, P)

        R2 = 0.0
        for j in range(0, len(sq)):
            R2 = R2 + ((sq[j, 0] - rec_sq[j, 0])**2 +
                       (sq[j, 1] - rec_sq[j, 1])**2)
        R2 = sqrt(R2)

        plt.plot(out_q[:, 1],
                 out_s[0:len(out_q), 1],
                 color='darksalmon',
                 lw=1.2)
        plt.plot(sq[:, 1], sq[:, 0], '-r')

        k_and_NS.append([1. / k, R2])

    writeTxt('k_and_NS.txt', k_and_NS)
    plt.xlim([0.0, 1.0])
    plt.ylim([0.0, 1.0])
    plt.xlabel('$q^{{}*{}}$')
    plt.ylabel('$s^{{}*{}}$')
    plt.show()
Exemple #13
0
def SWRFit(i0, i1, i2, L, x_space, dt, n, slope, deg):
    c1 = list()
    qBDRatio = list()
    sBDRatio = list()
    ptList = list()

    plt.figure
    plt.figure(figsize=(10, 8))
    ax = plt.subplot(111)
    dat_And_Indicator = list()
    # Index 0: qB/qD
    # Index 1: sB/sD
    # Index 2: C1
    # Index 3: [p, t]  Secondary Curve Fit
    for i in range(0, len(i1)):
        ie1 = i1[i]
        N = 5./3  # Manning Eq
        alpha = 1./n*sqrt(slope)  # Manning n
        steady_time = ((ie1/3600./1000.)**(1-N)*L/alpha)**(1/N)
        ToC = [steady_time*0., steady_time*0.001, steady_time*0.01,
               steady_time*0.05, steady_time*0.1, steady_time*0.3,
               steady_time*0.5, steady_time*0.55, steady_time*0.6,
               steady_time*0.65, steady_time*0.7, steady_time*0.75,
               steady_time*0.8, steady_time*0.9, steady_time*0.97,
               steady_time*0.99]
        for j in range(0, len(i2[i])):
            ie2 = i2[i][j]
            q2 = ie2/3600./1000.*L
            s2 = 1./(N+1)*alpha/(ie2/3600./1000.)*(
                (ie2/3600./1000.)*L/alpha)**((N+1)/N)
            for k in range(0, len(ToC)):
                d = ToC[k]
                ca = two_step.two_step_overland(i0, ie1, ie2, L, x_space, dt,
                                                n, slope)
                ca.ie1_duration(d)
                ca.run()

                SWR = bcdPoints(ca)  # Clip Secondary Curve
                SWR = np.array(SWR)
                qBD = SWR[-1, 1]/SWR[0, 1]
                sBD = SWR[-1, 2]/SWR[0, 2]

                #                                      #
                #  Fit Second Drying Curve From Above  #
                #                                      #
                SWR[:, 0] = (SWR[:, 0] - SWR[0, 0])/(SWR[-1, 0] - SWR[0, 0])
                SWR[:, 1] = SWR[:, 1]/SWR[0, 1]
                SWR[:, 2] = SWR[:, 2]/SWR[0, 2]

                t = np.arange(0, 1.01, 1./20)

                _SWR = np.zeros([21, 2])
                _SWR[:, 0] = np.interp(t, SWR[:, 0], SWR[:, 1])
                _SWR[:, 1] = np.interp(t, SWR[:, 0], SWR[:, 2])

                # Fitting
                [p, z] = bezeir_fit.fit(_SWR, deg, 1.0E-8)
                p[0] = [1.0, 1.0]
                p[-1] = [SWR[-1, 1], SWR[-1, 2]]
                n_SWR = bezeir_fit.gen(t, deg, p)

                dat_And_Indicator.append([qBD,
                                          sBD,
                                          ie1/ie2,
                                          [p, z]])

                color = randColor()
                labelString = ('$q_B/q_D$=' +
                               '{:4.3f}'.format(qBD) + ', ' +
                               '$c_1$=' +
                               '{:4.3f}'.format(ie1/ie2))
                print(labelString)

                ax.plot(SWR[:, 1], SWR[:, 2], lw=2.0, ls='-',
                        label=labelString, color=color)
                ax.plot(n_SWR[:, 0], n_SWR[:, 1], lw=1.0, ls='--', color=color)

    # dat_And_Indicator = sorted(dat_And_Indicator, key=itemgetter(2))
    for i in range(0, len(dat_And_Indicator)):
        qBDRatio.append(dat_And_Indicator[i][0])
        sBDRatio.append(dat_And_Indicator[i][1])
        c1.append(dat_And_Indicator[i][2])
        ptList.append(dat_And_Indicator[i][3])

    box = ax.get_position()
    ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
    ax.legend(loc='upper left', bbox_to_anchor=(1.05, 1.0), ncol=2)
    ax.set_xlabel('q')
    ax.set_ylabel('s')
    plt.title('Secondary Wetting Curve - Normalized and Fitting')
    plt.savefig('SWR_fitting.png')
    plt.close()

    f = open('ks1_SWRrec.pick', 'wb')
    pickle.dump({'qBD': qBDRatio, 'sBD': sBDRatio, 'PT': ptList, 'C1': c1}, f)
    f.close()