def iter_procs(iD, sD, rD, ps, ct, minlim): pr, D = 0, 0 pD = float('NaN') h, r, u, nr, im, Si = ps procs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] shuffle(procs) for p in procs: if p is 0: rD = bd.ResIn(rD, ps) elif p is 1: rD = bd.res_flow(rD, ps) elif p is 2: sD, iD = bd.immigration(sD, iD, ps) elif p is 3: iD = bd.ind_flow(iD, ps) elif p is 4: iD = bd.ind_disp(iD, ps) elif p is 5: iD, rD, D = bd.consume(iD, rD, ps) elif p is 6: iD = bd.grow(iD, ps) elif p is 7: iD = bd.transition(iD, ps) elif p is 8: iD = bd.maintenance(iD, ps) elif p is 9: sD, iD, pr = bd.reproduce(sD, iD, ps) avgQ = [] Sz = [] Ris = [] SpIDs = [] states = [] if len(list(iD)) > 0: for k, v in iD.items(): Ris.append(v['q'] / (v['mt'] * v['sz'])) avgQ.append(v['q']) Sz.append(v['sz']) SpIDs.append(v['sp']) states.append(v['st']) avgQ = mean(avgQ) Sz = mean(Sz) N = len(states) pD = states.count('d') / N S = len(list(set(SpIDs))) Ri = mean(Ris) return [ iD, sD, rD, N, S, len(list(rD)), ct + 1, pr, pD, avgQ, Sz, D, Ri ] else: return [ iD, sD, rD, 0, 0, len(list(rD)), ct + 1, 0, float('NaN'), float('NaN'), float('NaN'), float('NaN'), float('NaN') ]
def iter_procs(iD, sD, rD, ps, ct, minlim): pr, D = 0, 0 pD = float('NaN') h, r, u, nr, im, Si = ps procs = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] shuffle(procs) for p in procs: if p is 0: rD = bd.ResIn(rD, ps) elif p is 1: rD = bd.res_flow(rD, ps) elif p is 2: sD, iD = bd.immigration(sD, iD, ps) elif p is 3: iD = bd.ind_flow(iD, ps) elif p is 4: iD = bd.ind_disp(iD, ps) elif p is 5: iD, rD, D = bd.consume(iD, rD, ps) elif p is 6: iD = bd.grow(iD, ps) elif p is 7: iD = bd.transition(iD, ps) elif p is 8: iD = bd.maintenance(iD, ps) elif p is 9: sD, iD, pr = bd.reproduce(sD, iD, ps) avgQ = [] Sz = [] Ris = [] SpIDs = [] states = [] if len(list(iD)) > 0: for k, v in iD.items(): Ris.append(v['q']/(v['mt']*v['sz'])) avgQ.append(v['q']) Sz.append(v['sz']) SpIDs.append(v['sp']) states.append(v['st']) avgQ = mean(avgQ) Sz = mean(Sz) N = len(states) pD = states.count('d')/N S = len(list(set(SpIDs))) Ri = mean(Ris) return [iD, sD, rD, N, S, len(list(rD)), ct+1, pr, pD, avgQ, Sz, D, Ri] else: return [iD, sD, rD, 0, 0, len(list(rD)), ct+1, 0, float('NaN'), float('NaN'), float('NaN'), float('NaN'), float('NaN')]
def nextFrame(arg): """ Function called for each successive animation frame; arg is the frame number """ global ADs, ADList, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth, fixed, p, BurnIn, t, num_sims, width, height, Rates, u0, rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, SpColorDict, GrowthDict, N_RD, P_RD, C_RD, DispDict, MaintDict, one9th, four9ths, one36th, barrier, gmax, dmax, maintmax, IndIDs, Qs, IndID, IndTimeIn, IndExitAge, IndX, IndY, Ind_scatImage, SpeciesIDs, EnvD, TY, tracer_scatImage, TTimeIn, TIDs, TExitAge, TX, RTypes, RX, RY, RID, RIDs, RVals, RTimeIn, RExitAge, resource_scatImage, bN, bS, bE, bW, bNE, bNW, bSE, bSW, ct1, Mu, Maint, motion, reproduction, speciation, seedCom, m, r, nNi, nP, nC, rmax, sim, RAD, splist, N, ct, splist2, WTs, Jcs, Sos, RDens, RDiv, RRich, S, ES, Ev, BP, SD, Nm, sk, T, R, LowerLimit, prod_i, prod_q, viscosity, alpha, Ts, Rs, PRODIs, Ns, TTAUs, INDTAUs, RDENs, RDIVs, RRICHs, Ss, ESs, EVs, BPs, SDs, NMAXs, SKs, MUs, MAINTs, PRODNs, PRODPs, PRODCs, lefts, bottoms, Gs, Ms, NRs, PRs, CRs, Ds, RTAUs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, amp, freq, flux, pulse, phase, disturb, envgrads, barriers ct += 1 #plot_system = 'yes' plot_system = 'no' # fluctuate flow according to amplitude, frequency, & phase u1 = u0 + u0 * (amp * sin(2 * pi * ct * freq + phase)) if u1 > 1: u1 == 1.0 # Fluid dynamics nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier = LBM.stream( [nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier]) rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW = LBM.collide( viscosity, rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, u0) # Inflow of tracers if motion == 'white_noise' or motion == 'brown_noise': numt = 10 TIDs, TTimeIn, TX, TY = bide.NewTracers(numt, motion, TIDs, TX, TY, TTimeIn, width, height, 2) elif ct == 1: numt = 10 TIDs, TTimeIn, TX, TY = bide.NewTracers(numt, motion, TIDs, TX, TY, TTimeIn, width, height, 2) else: numt = 1 TIDs, TTimeIn, TX, TY = bide.NewTracers(numt, motion, TIDs, TX, TY, TTimeIn, width, height, u0) # moving tracer particles if len(TIDs) > 0: if motion == 'fluid': TIDs, TX, TY, TExitAge, TTimeIn = bide.fluid_movement( 'tracer', TIDs, TTimeIn, TExitAge, TX, TY, ux, uy, width, height, u0) else: TIDs, TX, TY, TExitAge, TTimeIn = bide.nonfluid_movement( 'tracer', motion, TIDs, TTimeIn, TExitAge, TX, TY, ux, uy, width, height, u0) # Inflow of resources if motion == 'white_noise' or motion == 'brown_noise': u1 = 2 RTypes, RVals, RX, RY, RIDs, RID, RTimeIn = bide.ResIn( motion, RTypes, RVals, RX, RY, RID, RIDs, RTimeIn, r, rmax, nNi, nP, nC, width, height, u1) # resource flow Lists = [RTypes, RIDs, RID, RVals] if len(RTypes) > 0: if motion == 'fluid': RTypes, RX, RY, RExitAge, RIDs, RID, RTimeIn, RVals = bide.fluid_movement( 'resource', Lists, RTimeIn, RExitAge, RX, RY, ux, uy, width, height, u0) else: RTypes, RX, RY, RExitAge, RIDs, RID, RTimeIn, RVals = bide.nonfluid_movement( 'resource', motion, Lists, RTimeIn, RExitAge, RX, RY, ux, uy, width, height, u0) # Inflow of individuals (immigration) if ct == 1: SpeciesIDs, IndX, IndY, MaintDict, EnvD, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.immigration( dmax, gmax, maintmax, motion, seedCom, 1, SpeciesIDs, IndX, IndY, width, height, MaintDict, EnvD, envgrads, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, nNi, nP, nC, u1, alpha, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) else: SpeciesIDs, IndX, IndY, MaintDict, EnvD, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.immigration( dmax, gmax, maintmax, motion, 1, m, SpeciesIDs, IndX, IndY, width, height, MaintDict, EnvD, envgrads, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, nNi, nP, nC, u1, alpha, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # dispersal Lists = [ SpeciesIDs, IndIDs, IndID, Qs, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList, Qs ] if len(SpeciesIDs) > 0: if motion == 'fluid': SpeciesIDs, IndX, IndY, IndExitAge, IndIDs, IndID, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList, Qs = bide.fluid_movement( 'individual', Lists, IndTimeIn, IndExitAge, IndX, IndY, ux, uy, width, height, u0) else: SpeciesIDs, IndX, IndY, IndExitAge, IndIDs, IndID, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList, Qs = bide.nonfluid_movement( 'individual', motion, Lists, IndTimeIn, IndExitAge, IndX, IndY, ux, uy, width, height, u0) # Chemotaxis #SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.chemotaxis(reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # Forage #SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.density_forage(RVals, RX, RY, reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) PRODI, PRODN, PRODC, PRODP = 0, 0, 0, 0 p1, TNQ1, TPQ1, TCQ1 = metrics.getprod(Qs) # Consume RTypes, RVals, RIDs, RID, RTimeIn, RExitAge, RX, RY, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.consume( RTypes, RVals, RIDs, RID, RX, RY, RTimeIn, RExitAge, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, N_RD, P_RD, C_RD, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # Reproduction SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.reproduce( reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # maintenance SpeciesIDs, X, Y, IndExitAge, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.maintenance( SpeciesIDs, IndX, IndY, IndExitAge, SpColorDict, MaintDict, EnvD, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # transition to or from dormancy Sp_IDs, IDs, Qs, GrowthList, MaintList, ADList = bide.transition( SpeciesIDs, IndIDs, Qs, GrowthList, MaintList, ADList) p2, TNQ2, TPQ2, TCQ2 = metrics.getprod(Qs) PRODI = p2 - p1 PRODN = TNQ2 - TNQ1 PRODP = TPQ2 - TPQ1 PRODC = TCQ2 - TCQ1 # disturbance if np.random.binomial(1, disturb * u0) == 1: SpeciesIDs, X, Y, IndExitAge, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.decimate( SpeciesIDs, IndX, IndY, IndExitAge, SpColorDict, MaintDict, EnvD, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) ax = fig.add_subplot(111) plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if len(SpeciesIDs) >= 1: RAD, splist = bide.GetRAD(SpeciesIDs) else: RAD, splist, N, S = [], [], 0, 0 N, S, tt, rr = sum(RAD), len(RAD), len(TIDs), len(RIDs) numD = ADList.count('d') if N != len(ADList): print N, len(SpeciesIDs), len(ADList) print "N != len(ADList)" sys.exit() if N > 0: Title = [ 'Individuals consume resources, grow, reproduce, and die as they move through the environment. \nAverage speed on the x-axis is ' + str(u0) + ' units per time step. ' + str(len(TExitAge)) + ' tracers have passed through.\nN: ' + str(N) + ', S: ' + str(S) + ', tracers: ' + str(tt) + ', resources: ' + str(rr) + ', ct: ' + str(ct) + ', %dormant: ' + str(round((numD / N) * 100, 2)) ] else: Title = [ 'Individuals consume resources, grow, reproduce, and die as they move through the environment. \nAverage speed on the x-axis is ' + str(u0) + ' units per time step. ' + str(len(TExitAge)) + ' tracers have passed through.\nN: ' + str(N) + ', S: ' + str(S) + ', tracers: ' + str(tt) + ', resources: ' + str(rr) + ', ct: ' + str(ct) + ', %dormant: nan' ] txt.set_text(' '.join(Title)) ax.set_ylim(0, height) ax.set_xlim(0, width) if plot_system == 'yes': ##### PLOTTING THE SYSTEM ############################################## resource_scatImage.remove() tracer_scatImage.remove() Ind_scatImage.remove() colorlist = [] sizelist = [] for i, val in enumerate(SpeciesIDs): if ADList[i] == 'a': colorlist.append('red') elif ADList[i] == 'd': colorlist.append('0.3') sizelist.append(min(Qs[i]) * 1000) resource_scatImage = ax.scatter(RX, RY, s=RVals * 100, c='w', edgecolor='SpringGreen', lw=0.6, alpha=0.3) Ind_scatImage = ax.scatter(IndX, IndY, s=sizelist, c=colorlist, edgecolor='0.2', lw=0.2, alpha=0.9) tracer_scatImage = ax.scatter(TX, TY, s=200, c='r', marker='*', lw=0.0, alpha=0.6) Ns.append(N) if N == 0 and BurnIn == 'not done': Ns = [Ns[-1]] # only keep the most recent N value BurnIn = 'done' if ct > 200 and BurnIn == 'not done': if len(Ns) > 100: AugmentedDickeyFuller = sta.adfuller(Ns) val, p = AugmentedDickeyFuller[0:2] if p >= 0.05: Ns.pop(0) elif p < 0.05 or isnan(p) == True: BurnIn = 'done' Ns = [Ns[-1]] # only keep the most recent N value if ct > 300 and BurnIn == 'not done': Ns = [Ns[-1]] # only keep the most recent N value BurnIn = 'done' if BurnIn == 'done': PRODIs.append(PRODI) PRODNs.append(PRODN) PRODPs.append(PRODP) PRODCs.append(PRODC) if len(RExitAge) > 0: RTAUs.append(mean(RExitAge)) if len(IndExitAge) > 0: INDTAUs.append(mean(IndExitAge)) if len(TExitAge) > 0: TTAUs.append(mean(TExitAge)) # Examining the resource RAD if len(RTypes) > 0: RRAD, Rlist = bide.GetRAD(RTypes) RDens = len(RTypes) / (height * width) RDiv = float(metrics.Shannons_H(RRAD)) RRich = len(Rlist) RDENs.append(RDens) RDIVs.append(RDiv) RRICHs.append(RRich) # Number of tracers, resource particles, and individuals T, R, N = len(TIDs), len(RIDs), len(SpeciesIDs) Ts.append(T) Rs.append(R) Ss.append(S) if N >= 1: if R >= 1: q = min([10, R]) #avg_dist = spatial.avg_dist(X, RX, Y, RY, q) avg_dist = spatial.nearest_neighbor(X, RX, Y, RY, q) AVG_DIST.append(avg_dist) spD = DispDict.values() spM = MaintDict.values() spG = GrowthDict.values() SpecDisp.append(mean(spD)) SpecMaint.append(mean(spM)) SpecGrowth.append(mean(spG)) RAD, splist = bide.GetRAD(SpeciesIDs) RAD, splist = zip(*sorted(zip(RAD, splist), reverse=True)) RAD = list(RAD) S = len(RAD) Ss.append(S) # Evenness, Dominance, and Rarity measures Ev = metrics.e_var(RAD) EVs.append(Ev) ES = metrics.e_simpson(RAD) ESs.append(ES) if len(Ns) == 1: splist2 = list(splist) if len(Ns) > 1: wt = metrics.WhittakersTurnover(splist, splist2) jc = metrics.jaccard(splist, splist2) so = metrics.sorensen(splist, splist2) splist2 = list(splist) WTs.append(wt) Jcs.append(jc) Sos.append(so) Nm, BP = [max(RAD), Nm / N] NMAXs.append(Nm) BPs.append(BP) SD = metrics.simpsons_dom(RAD) SDs.append(SD) sk = stats.skew(RAD) SKs.append(sk) Gs.append(mean(GrowthList)) Ms.append(mean(MaintList)) Ds.append(mean(DispList)) numD = ADList.count('d') ADs.append(numD / len(ADList)) Nmeans = [sum(x) / len(x) for x in zip(*N_RList)] NRs.append(mean(Nmeans)) Pmeans = [sum(x) / len(x) for x in zip(*P_RList)] PRs.append(mean(Pmeans)) Cmeans = [sum(x) / len(x) for x in zip(*C_RList)] CRs.append(mean(Cmeans)) #process = psutil.Process(os.getpid()) #mem = round(process.get_memory_info()[0] / float(2 ** 20), 1) # return the memory usage in MB if len(Ns) > 100: t = time.clock() - t #print sim, ' N:', int(round(mean(Ns))), 'S:', int(round(mean(Ss))), 'WT:', round(mean(WTs),2), ': flow:', u0, 'time:', round(t,1), 'seconds', ': Ttaus:',round(mean(TTimeIn)), round(mean(TExitAge)), ': Etau:', round(width/u0) #' MB:',int(round(mem)), 'p-val =', round(p,3) #print sim, ' N:', int(round(mean(Ns))), 'S:', int(round(mean(Ss))), ': flow:', u0, 'time:', round(t,1), 'seconds', ' height:', str(height), ' Avg dist:', round(mean(AVG_DIST),3), ' f(dormant):',round(mean(ADs),3) print sim, ' N:', int(round(mean(Ns))), 'S:', int(round( mean(Ss))), ' flow:', u0, 'time:', round( t, 1), 'Ttaus:', round(mean(TExitAge), 2), ': Etau:', round( (width - 1) / u0, 2), 'dormant:', round(mean(ADs), 3) t = time.clock() SString = str(splist).strip('()') RADString = str(RAD).strip('()') RADString = str(RAD).strip('[]') IndRTD = str(IndExitAge).strip('[]') TRTD = str(TExitAge).strip('[]') RRTD = str(RExitAge).strip('[]') OUT1 = open(GenPath + 'examples/SimData.csv', 'a') OUT2 = open(GenPath + 'examples/RADs.csv', 'a') OUT3 = open(GenPath + 'examples/Species.csv', 'a') OUT4 = open(GenPath + 'examples/IndRTD.csv', 'a') OUT5 = open(GenPath + 'examples/TracerRTD.csv', 'a') OUT6 = open(GenPath + 'examples/ResRTD.csv', 'a') #TTAUs = np.mean(TExitAge), np.mean(TTimeIn) outlist = [ sim, motion, mean(PRODIs), mean(PRODNs), mean(PRODPs), mean(PRODCs), r, nNi, nP, nC, rmax, gmax, maintmax, dmax, barriers, alpha, seedCom, u0, width - 0.2, height, viscosity, N, m, mean(RTAUs), mean(TExitAge), mean(INDTAUs), mean(RDENs), mean(RDIVs), mean(RRICHs), mean(Ss), mean(ESs), mean(EVs), mean(BPs), mean(SDs), mean(NMAXs), mean(SKs), T, R, speciation, mean(WTs), mean(Jcs), mean(Sos), mean(Gs), mean(Ms), mean(NRs), mean(PRs), mean(CRs), mean(Ds), amp, flux, freq, phase, disturb, mean(SpecGrowth), mean(SpecDisp), mean(SpecMaint), mean(AVG_DIST), mean(ADs) ] outlist = str(outlist).strip('[]') print >> OUT1, outlist print >> OUT2, RADString print >> OUT3, SString print >> OUT4, ct1, ',', sim, ',', IndRTD print >> OUT5, ct1, ',', sim, ',', TRTD print >> OUT6, ct1, ',', sim, ',', RRTD OUT1.close() OUT2.close() OUT3.close() OUT4.close() OUT5.close() OUT6.close() ct1 += 1 ct = 0 Rates = np.roll(Rates, -1, axis=0) u0 = Rates[0] n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, rho, ux, uy, bN, bS, bE, bW, bNE, bNW, bSE, bSW = LBM.SetLattice( u0, viscosity, width, height, lefts, bottoms, barriers) u1 = u0 + u0 * (amp * sin(2 * pi * ct * freq + phase)) RDens, RDiv, RRich, S, ES, Ev, BP, SD, Nm, sk, Mu, Maint, ct, IndID, RID, N, ct1, T, R, PRODI, PRODQ = [ 0 ] * 21 ADList, ADs, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth, SpColorList, GrowthList, MaintList, N_RList, P_RList, C_RList, RColorList, DispList = [ list([]) for _ in xrange(14) ] RAD, splist, IndTimeIn, SpeciesIDs, IndX, IndY, IndIDs, Qs, IndExitAge, TX, TY, TExitAge, TIDs, TTimeIn, RX, RY, RIDs, RTypes, RExitAge, RTimeIn, RVals, Gs, Ms, NRs, PRs, CRs, Ds, Ts, Rs, PRODIs, PRODNs, PRODPs, PRODCs, Ns, RTAUs, TTAUs, INDTAUs, RDENs, RDIVs, RRICHs, Ss, ESs, EVs, BPs, SDs, NMAXs, SKs, MUs, MAINTs, WTs, Jcs, Sos, splist2 = [ list([]) for _ in xrange(53) ] p = 0 BurnIn = 'not done' #if u0 in Rates: if u0 == max(Rates): print '\n' sim += 1 if sim > num_sims: print "simplex finished" sys.exit() width, height, alpha, motion, reproduction, speciation, seedCom, m, r, nNi, nP, nC, rmax, gmax, maintmax, dmax, amp, freq, flux, pulse, phase, disturb, envgrads, barriers, Rates = rp.get_rand_params( fixed) for i in range(barriers): lefts.append(np.random.uniform(0.2, .8)) bottoms.append(np.random.uniform(0.1, 0.7)) n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, rho, ux, uy, bN, bS, bE, bW, bNE, bNW, bSE, bSW = LBM.SetLattice( u0, viscosity, width, height, lefts, bottoms, barriers) u1 = u0 + u0 * (amp * sin(2 * pi * ct * freq + phase)) SpColorDict, GrowthDict, MaintDict, EnvD, N_RD, P_RD, C_RD, RColorDict, DispDict, EnvD = {}, {}, {}, {}, {}, {}, {}, {}, {}, {} ####################### REPLACE ENVIRONMENT ######################## ax = fig.add_subplot(111)
def nextFrame(arg): """ Function called for each successive animation frame; arg is the frame number """ global mmax, pmax, ADs, ADList, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth global fixed, p, BurnIn, t, num_sims, width, height, Rates, u0, rho, ux, uy global n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, SpColorDict, GrowthDict, N_RD global P_RD, C_RD, DispDict, MaintDict, one9th, four9ths, one36th, barrier global gmax, dmax, maintmax, IndIDs, Qs, IndID, IndTimeIn, IndExitAge, IndX global IndY, Ind_scatImage, SpeciesIDs, EnvD, TY, tracer_scatImage, TTimeIn global TIDs, TExitAge, TX, RTypes, RX, RY, RID, RIDs, RVals, RTimeIn, RExitAge global resource_scatImage, bN, bS, bE, bW, bNE, bNW, bSE, bSW, ct1, Mu, Maint global motion, reproduction, speciation, seedCom, m, r, nNi, nP, nC, rmax, sim global RAD, splist, N, ct, splist2, WTs, Jcs, Sos, RDens, RDiv, RRich, S, ES global Ev, BP, SD, Nm, sk, T, R, LowerLimit, prod_i, prod_q, viscosity, alpha global Ts, Rs, PRODIs, Ns, TTAUs, INDTAUs, RDENs, RDIVs, RRICHs, Ss, ESs, EVs global BPs, SDs, NMAXs, SKs, MUs, MAINTs, PRODNs, PRODPs, PRODCs, lefts, bottoms global Gs, Ms, NRs, PRs, CRs, Ds, RTAUs, GrowthList, MaintList, N_RList, P_RList global C_RList, DispList, amp, freq, flux, pulse, phase, disturb, envgrads global barriers, MainFactorDict, RPFDict ct += 1 #plot_system = 'yes' plot_system = 'no' # fluctuate flow according to amplitude, frequency, & phase u1 = u0 + u0*(amp * sin(2*pi * ct * freq + phase)) if u1 > 1: u1 == 1.0 # Fluid dynamics nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier = LBM.stream([nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier]) rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW = LBM.collide(viscosity, rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, u0) # Inflow of resources if motion == 'white_noise' or motion == 'brown_noise': u1 = 2 RTypes, RVals, RX, RY, RIDs, RID, RTimeIn = bide.ResIn(motion, RTypes, RVals, RX, RY, RID, RIDs, RTimeIn, r, rmax, nNi, nP, nC, width, height, u1) # resource flow Lists = [RTypes, RIDs, RID, RVals] if len(RTypes) > 0: if motion == 'fluid': RTypes, RX, RY, RExitAge, RIDs, RID, RTimeIn, RVals = bide.fluid_movement('resource', Lists, RTimeIn, RExitAge, RX, RY, ux, uy, width, height, u0) else: RTypes, RX, RY, RExitAge, RIDs, RID, RTimeIn, RVals = bide.nonfluid_movement('resource', motion, Lists, RTimeIn, RExitAge, RX, RY, ux, uy, width, height, u0) # Inflow of individuals (immigration) if ct == 1: SpeciesIDs, IndX, IndY, MaintDict, MainFactorDict, RPFDict, EnvD, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.immigration(mmax, pmax, dmax, gmax, maintmax, motion, seedCom, 1, SpeciesIDs, IndX, IndY, width, height, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, nNi, nP, nC, u1, alpha, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) else: SpeciesIDs, IndX, IndY, MaintDict, MainFactorDict, RPFDict, EnvD, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.immigration(mmax, pmax, dmax, gmax, maintmax, motion, 1, m, SpeciesIDs, IndX, IndY, width, height, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, N_RD, P_RD, C_RD, nNi, nP, nC, u1, alpha, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # dispersal Lists = [SpeciesIDs, IndIDs, IndID, Qs, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList] if len(SpeciesIDs) > 0: if motion == 'fluid': SpeciesIDs, IndX, IndY, IndExitAge, IndIDs, IndID, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList, Qs = bide.fluid_movement('individual', Lists, IndTimeIn, IndExitAge, IndX, IndY, ux, uy, width, height, u0) else: SpeciesIDs, IndX, IndY, IndExitAge, IndIDs, IndID, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.nonfluid_movement('individual', motion, Lists, IndTimeIn, IndExitAge, IndX, IndY, ux, uy, width, height, u0) # Chemotaxis #SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.chemotaxis(reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # Forage #SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.density_forage(RVals, RX, RY, reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) PRODI, PRODN, PRODC, PRODP = 0, 0, 0, 0 p1, TNQ1, TPQ1, TCQ1 = metrics.getprod(Qs) # Consume #RTypes, RVals, RIDs, RID, RTimeIn, RExitAge, RX, RY, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.consume(RTypes, RVals, RIDs, RID, RX, RY, RTimeIn, RExitAge, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, N_RD, P_RD, C_RD, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # Reproduction SpeciesIDs, Qs, IndIDs, ID, TimeIn, X, Y, GrowthDict, DispDict, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.reproduce(reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndX, IndY, width, height, GrowthDict, DispDict, SpColorDict, N_RD, P_RD, C_RD, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, nNi, nP, nC, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # maintenance #SpeciesIDs, X, Y, IndExitAge, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.maintenance(SpeciesIDs, IndX, IndY, IndExitAge, SpColorDict, MaintDict, MainFactorDict, RPFDict, EnvD, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) # transition to or from dormancy Sp_IDs, IDs, Qs, GrowthList, MaintList, ADList = bide.transition(SpeciesIDs, IndIDs, Qs, GrowthList, MaintList, MainFactorDict, RPFDict, ADList) p2, TNQ2, TPQ2, TCQ2 = metrics.getprod(Qs) PRODI = p2 - p1 PRODN = TNQ2 - TNQ1 PRODP = TPQ2 - TPQ1 PRODC = TCQ2 - TCQ1 # disturbance #if np.random.binomial(1, disturb*u0) == 1: SpeciesIDs, X, Y, IndExitAge, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList = bide.decimate(SpeciesIDs, IndX, IndY, IndExitAge, SpColorDict, MaintDict, MainFactorDict, RPFDict, EnvD, IndIDs, IndTimeIn, Qs, GrowthList, MaintList, N_RList, P_RList, C_RList, DispList, ADList) ax = fig.add_subplot(111) plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if len(SpeciesIDs) >= 1: RAD, splist = bide.GetRAD(SpeciesIDs) else: RAD, splist, N, S = [], [], 0, 0 N, S, tt, rr = sum(RAD), len(RAD), len(TIDs), len(RIDs) numD = ADList.count('d') if N != len(ADList): print N, len(SpeciesIDs), len(ADList) print "N != len(ADList)" sys.exit() if N > 0: Title = ['Individuals consume resources, grow, reproduce, and die as they move through the environment. \nAverage speed on the x-axis is '+str(u0)+' units per time step. '+str(len(TExitAge))+' tracers have passed through.\nN: '+str(N)+', S: '+str(S)+', tracers: '+str(tt)+', resources: '+str(rr)+', ct: '+str(ct)+', %dormant: '+str(round((numD/N)*100, 2))] else: Title = ['Individuals consume resources, grow, reproduce, and die as they move through the environment. \nAverage speed on the x-axis is '+str(u0)+' units per time step. '+str(len(TExitAge))+' tracers have passed through.\nN: '+str(N)+', S: '+str(S)+', tracers: '+str(tt)+', resources: '+str(rr)+', ct: '+str(ct)+', %dormant: nan'] txt.set_text(' '.join(Title)) ax.set_ylim(0, height) ax.set_xlim(0, width) if plot_system == 'yes': ##### PLOTTING THE SYSTEM ############################################## resource_scatImage.remove() tracer_scatImage.remove() Ind_scatImage.remove() colorlist = [] sizelist = [] for i, val in enumerate(SpeciesIDs): if ADList[i] == 'a': colorlist.append('red') elif ADList[i] == 'd': colorlist.append('0.3') sizelist.append(min(Qs[i]) * 1000) resource_scatImage = ax.scatter(RX, RY, s = RVals*100, c = 'w', edgecolor = 'SpringGreen', lw = 0.6, alpha=0.3) Ind_scatImage = ax.scatter(IndX, IndY, s = sizelist, c = colorlist, edgecolor = '0.2', lw = 0.2, alpha=0.9) tracer_scatImage = ax.scatter(TX, TY, s = 200, c = 'r', marker='*', lw=0.0, alpha=0.6) Ns.append(N) if N == 0 and BurnIn == 'not done': Ns = [Ns[-1]] # only keep the most recent N value BurnIn = 'done' if ct > 200 and BurnIn == 'not done': if len(Ns) > 100: AugmentedDickeyFuller = sta.adfuller(Ns) val, p = AugmentedDickeyFuller[0:2] if p >= 0.05: Ns.pop(0) elif p < 0.05 or isnan(p) == True: BurnIn = 'done' Ns = [Ns[-1]] # only keep the most recent N value if ct > 300 and BurnIn == 'not done': Ns = [Ns[-1]] # only keep the most recent N value BurnIn = 'done' if BurnIn == 'done': PRODIs.append(PRODI) PRODNs.append(PRODN) PRODPs.append(PRODP) PRODCs.append(PRODC) if len(RExitAge) > 0: RTAUs.append(mean(RExitAge)) if len(IndExitAge) > 0: INDTAUs.append(mean(IndExitAge)) if len(TExitAge) > 0: TTAUs.append(mean(TExitAge)) # Examining the resource RAD if len(RTypes) > 0: RRAD, Rlist = bide.GetRAD(RTypes) RDens = len(RTypes)/(height*width) RDiv = float(metrics.Shannons_H(RRAD)) RRich = len(Rlist) RDENs.append(RDens) RDIVs.append(RDiv) RRICHs.append(RRich) # Number of tracers, resource particles, and individuals T, R, N = len(TIDs), len(RIDs), len(SpeciesIDs) Ts.append(T) Rs.append(R) Ss.append(S) if N >= 1: if R >= 1: q = min([10, R]) avg_dist = spatial.avg_dist(IndX, RX, IndY, RY, q) avg_dist = spatial.nearest_neighbor(IndX, RX, IndY, RY, q) AVG_DIST.append(avg_dist) spD = DispDict.values() spM = MaintDict.values() spMF = MainFactorDict.values() spRPF = RPFDict.values() spG = GrowthDict.values() SpecDisp.append(mean(spD)) SpecMaint.append(mean(spM)) SpecGrowth.append(mean(spG)) RAD, splist = bide.GetRAD(SpeciesIDs) RAD, splist = zip(*sorted(zip(RAD, splist), reverse=True)) RAD = list(RAD) S = len(RAD) Ss.append(S) # Evenness, Dominance, and Rarity measures Ev = metrics.e_var(RAD) EVs.append(Ev) ES = metrics.e_simpson(RAD) ESs.append(ES) if len(Ns) == 1: splist2 = list(splist) if len(Ns) > 1: wt = metrics.WhittakersTurnover(splist, splist2) jc = metrics.jaccard(splist, splist2) so = metrics.sorensen(splist, splist2) splist2 = list(splist) WTs.append(wt) Jcs.append(jc) Sos.append(so) Nm, BP = [max(RAD), Nm/N] NMAXs.append(Nm) BPs.append(BP) SD = metrics.simpsons_dom(RAD) SDs.append(SD) sk = stats.skew(RAD) SKs.append(sk) Gs.append(mean(GrowthList)) Ms.append(mean(MaintList)) Ds.append(mean(DispList)) numD = ADList.count('d') ADs.append(numD/len(ADList)) Nmeans = [sum(x)/len(x) for x in zip(*N_RList)] NRs.append(mean(Nmeans)) Pmeans = [sum(x)/len(x) for x in zip(*P_RList)] PRs.append(mean(Pmeans)) Cmeans = [sum(x)/len(x) for x in zip(*C_RList)] CRs.append(mean(Cmeans)) #process = psutil.Process(os.getpid()) #mem = round(process.get_memory_info()[0] / float(2 ** 20), 1) # return the memory usage in MB if len(Ns) > 100: t = time.clock() - t #print sim, ' N:', int(round(mean(Ns))), 'S:', int(round(mean(Ss))), 'WT:', round(mean(WTs),2), ': flow:', u0, 'time:', round(t,1), 'seconds', ': Ttaus:',round(mean(TTimeIn)), round(mean(TExitAge)), ': Etau:', round(width/u0) #' MB:',int(round(mem)), 'p-val =', round(p,3) #print sim, ' N:', int(round(mean(Ns))), 'S:', int(round(mean(Ss))), ': flow:', u0, 'time:', round(t,1), 'seconds', ' height:', str(height), ' Avg dist:', round(mean(AVG_DIST),3), ' f(dormant):',round(mean(ADs),3) print sim, ' N:', int(round(mean(Ns))), 'S:', int(round(mean(Ss))), ' flow:', u0, 'time:', round(t,1), 'Ttaus:', round(mean(TExitAge),2), ': Etau:', round((width-1)/u0,2), 'dormant:', round(mean(ADs),3) t = time.clock() SString = str(splist).strip('()') RADString = str(RAD).strip('()') RADString = str(RAD).strip('[]') IndRTD = str(IndExitAge).strip('[]') TRTD = str(TExitAge).strip('[]') RRTD = str(RExitAge).strip('[]') OUT1 = open(GenPath + '/SimData.csv','a') #TTAUs = np.mean(TExitAge), np.mean(TTimeIn) outlist = [sim,motion,mean(PRODIs),mean(PRODNs),mean(PRODPs),mean(PRODCs),r,nNi,nP,nC,rmax,gmax,maintmax,dmax,barriers,alpha,seedCom,u0,width-0.2,height,viscosity,N,m,mean(RTAUs), mean(TExitAge) ,mean(INDTAUs),mean(RDENs),mean(RDIVs),mean(RRICHs),mean(Ss),mean(ESs),mean(EVs),mean(BPs),mean(SDs),mean(NMAXs),mean(SKs),T,R,speciation,mean(WTs),mean(Jcs),mean(Sos),mean(Gs),mean(Ms),mean(NRs),mean(PRs),mean(CRs),mean(Ds),amp,flux,freq,phase,disturb, mean(SpecGrowth), mean(SpecDisp), mean(SpecMaint), mean(AVG_DIST), mean(ADs)] outlist = str(outlist).strip('[]') print>>OUT1, outlist OUT1.close() ct1 += 1 ct = 0 Rates = np.roll(Rates, -1, axis=0) u0 = Rates[0] n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, rho, ux, uy, bN, bS, bE, bW, bNE, bNW, bSE, bSW = LBM.SetLattice(u0, viscosity, width, height, lefts, bottoms, barriers) u1 = u0 + u0*(amp * sin(2*pi * ct * freq + phase)) RDens, RDiv, RRich, S, ES, Ev, BP, SD, Nm, sk, Mu, Maint, ct, IndID, RID, N, ct1, T, R, PRODI, PRODQ = [0]*21 ADList, ADs, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth, SpColorList, GrowthList, MaintList, N_RList, P_RList, C_RList, RColorList, DispList = [list([]) for _ in xrange(14)] RAD, splist, IndTimeIn, SpeciesIDs, IndX, IndY, IndIDs, Qs, IndExitAge, TX, TY, TExitAge, TIDs, TTimeIn, RX, RY, RIDs, RTypes, RExitAge, RTimeIn, RVals, Gs, Ms, NRs, PRs, CRs, Ds, Ts, Rs, PRODIs, PRODNs, PRODPs, PRODCs, Ns, RTAUs, TTAUs, INDTAUs, RDENs, RDIVs, RRICHs, Ss, ESs, EVs,BPs, SDs, NMAXs, SKs, MUs, MAINTs, WTs, Jcs, Sos, splist2 = [list([]) for _ in xrange(53)] p = 0 BurnIn = 'not done' #if u0 in Rates: if u0 == max(Rates): print '\n' sim += 1 if sim > num_sims: print "model finished" sys.exit() width, height, alpha, motion, reproduction, speciation, seedCom, m, r, nNi, nP, nC, rmax, gmax, maintmax, dmax, amp, freq, flux, pulse, phase, disturb, envgrads, barriers, Rates, pmax, mmax = rp.get_rand_params(fixed) for i in range(barriers): lefts.append(np.random.uniform(0.2, .8)) bottoms.append(np.random.uniform(0.1, 0.7)) n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, rho, ux, uy, bN, bS, bE, bW, bNE, bNW, bSE, bSW = LBM.SetLattice(u0, viscosity, width, height, lefts, bottoms, barriers) u1 = u0 + u0*(amp * sin(2*pi * ct * freq + phase)) SpColorDict, GrowthDict, MaintDict, MainFactorDict, RPFDict, EnvD, N_RD, P_RD, C_RD, RColorDict, DispDict, EnvD = {}, {}, {}, {}, {}, {}, {}, {}, {}, {} ####################### REPLACE ENVIRONMENT ######################## ax = fig.add_subplot(111)
def nextFrame(arg): """ Function called for each successive animation frame; arg is the frame number """ global mmax, pmax, ADs, ADList, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth global fixed, p, BurnIn, t, num_sims, width, height, Rates, GrowthDict, RD global DispDict, MaintDict, gmax, dmax, maintmax, IndIDs, Qs, EVList global IndID, IndX, IndY, Ind_scatImage, SpeciesIDs, TLList global RX, RY, RID, RIDs, RVals, EnvD, resource_scatImage, Mu, Maint global seedCom, m, r, sim global N, ct, RDens, RDiv, RRich, T, R, LowerLimit, prod_i, prod_q global Ts, Rs, PRODIs, Ns, RDENs, RDIVs, RRICHs, GrowthList, MaintList, RList global MUs, MAINTs, PRODNs, PRODPs, PRODCs, Gs, Ms, Ds global DispList, envgrads, MainFactorDict, RPFDict, enzyme_field, u0 global TrophicComplexityLevel, SpatialComplexityLevel, encList, std global ResourceComplexityLevel, BiologicalComplexityLevel global Ragg, Iagg, static, Deadlist numDead = 0 ct += 1 #print ct encounters = 0 # Inflow of resources RList, RVals, RX, RY, RIDs, RID = bide.ResIn(std, ct, RList, RVals, RX, RY, RID,\ RIDs, r, width, height, u0, TrophicComplexityLevel, SpatialComplexityLevel, \ ResourceComplexityLevel, BiologicalComplexityLevel) # Immigration SpeciesIDs, IndX, IndY, MaintDict, MainFactorDict, RPFDict, EnvD, GrowthDict,\ DispDict, IndIDs, IndID, Qs, RD, GrowthList, MaintList, DispList, ADList, EVList,\ TLList = bide.immigration(std, mmax, pmax, dmax, gmax, maintmax, seedCom, m, \ SpeciesIDs, IndX, IndY, width, height, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads,\ GrowthDict, DispDict, IndIDs, IndID, Qs, RD, u0, GrowthList, MaintList, \ DispList, ADList, EVList, TLList, ct, TrophicComplexityLevel, \ SpatialComplexityLevel, ResourceComplexityLevel, BiologicalComplexityLevel) # Dispersal if SpatialComplexityLevel < 3: SpeciesIDs, Qs, IndIDs, ID, IndX, IndY, GrowthDict, DispDict, GrowthList, \ MaintList, DispList, ADList, EVList, TLList, RList, RVals, RX, RY, RIDs, RID, numDead = bide.dispersal(SpeciesIDs,\ Qs, IndIDs, IndID, IndX, IndY, width, height, GrowthDict, \ DispDict, RD, MaintDict, MainFactorDict, RPFDict, EnvD, envgrads, \ GrowthList, MaintList, DispList, ADList, EVList, TLList, RList, RVals, RX, RY, RIDs, RID, TrophicComplexityLevel, \ SpatialComplexityLevel, ResourceComplexityLevel, BiologicalComplexityLevel, numDead) elif SpatialComplexityLevel == 3: RList, RVals, RIDs, RID, RX, RY, SpeciesIDs, Qs, IndIDs, IndID, IndX, IndY, width, height, GD, RD, DispD, GrowthList,\ MaintList, DispList, ADList, TLList, EVList, numDead = bide.chemotaxis(RList, RVals, RIDs, RID, RX, RY, SpeciesIDs, Qs, IndIDs, IndID,\ IndX, IndY, width, height, GrowthDict, RD, DispDict, GrowthList, MaintList, DispList, ADList, TLList, EVList,\ TrophicComplexityLevel, SpatialComplexityLevel, ResourceComplexityLevel, BiologicalComplexityLevel, numDead) # Resource Dispersal if SpatialComplexityLevel == 1: RList, RVals, RX, RY, RID, RIDs = bide.res_dispersal(ct, RList, RVals, RX, RY, RID, RIDs, r,\ width, height, u0, TrophicComplexityLevel, SpatialComplexityLevel, \ ResourceComplexityLevel, BiologicalComplexityLevel) PRODI = 0 p1 = len(Qs) # Consume RList, RVals, RIDs, RID, RX, RY, SpeciesIDs, Qs, encounters = bide.consume(enzyme_field, \ RList, RVals, RIDs, RID, RX, RY, SpeciesIDs, Qs, IndIDs, IndID, IndX, IndY, \ width, height, GrowthDict, MaintDict, RD, DispDict, GrowthList, MaintList, DispList, ADList, \ TLList, EVList, TrophicComplexityLevel, SpatialComplexityLevel, \ ResourceComplexityLevel, BiologicalComplexityLevel) # Reproduction SpeciesIDs, Qs, IndIDs, ID, IndX, IndY, GrowthDict, DispDict, GrowthList, MaintList, \ DispList, ADList, EVList, TLList, RList, RVals, RX, RY, RID, RIDs, numDead = bide.reproduce(SpeciesIDs, Qs, IndIDs, IndID, \ IndX, IndY, width, height, GrowthDict, DispDict, RD, MaintDict, MainFactorDict, \ RPFDict, EnvD, envgrads, GrowthList, MaintList, DispList, ADList, EVList, TLList, RList, RVals, RX, RY, RID, RIDs, \ TrophicComplexityLevel, SpatialComplexityLevel, ResourceComplexityLevel, \ BiologicalComplexityLevel, numDead) # maintenance SpeciesIDs, IndX, IndY, IndIDs, Qs, GrowthList, MaintList, DispList, ADList,\ EVList, TLList, RList, RVals, RX, RY, RIDs, RID, numDead = bide.maintenance(SpeciesIDs, IndX, IndY, MaintDict, MainFactorDict, \ RPFDict, EnvD, IndIDs, Qs, GrowthList, MaintList, DispList, ADList, EVList, TLList, RList, RVals, RX, RY, RIDs, RID,\ TrophicComplexityLevel, SpatialComplexityLevel, ResourceComplexityLevel, \ BiologicalComplexityLevel, numDead) # transition to or from dormancy SpeciesIDs, IndX, IndY, GrowthList, DispList, ADList, EVList, IndIDs, Qs, GrowthList, \ MaintList, TLList, RList, RVals, RX, RY, RIDs, RID, numDead = bide.transition(SpeciesIDs, IndX, IndY, GrowthList, DispList, ADList, EVList,\ IndIDs, Qs, MaintList, TLList, RList, RVals, RX, RY, RIDs, RID, MainFactorDict, RPFDict, \ TrophicComplexityLevel, SpatialComplexityLevel, ResourceComplexityLevel, \ BiologicalComplexityLevel, numDead) p2 = len(Qs) PRODI = p2 - p1 ax1 = fig.add_subplot(2,2,1) # initiate 1st plot ax2 = fig.add_subplot(2,2,2) # initiate 2nd plot ax3 = fig.add_subplot(2,2,3) # initiate 3rd plot ax4 = fig.add_subplot(2,2,4) # initiate 4th plot plt.tick_params(axis='both', which='both', bottom='off', top='off', \ left='off', right='off', labelbottom='off', labelleft='off') N = len(IndIDs) if N == 0 or N > 20000: TrophicComplexityLevel = choice([1,2,3]) # SpatialComplexityLevel = choice([1,2,3]) # goes up to 3 ResourceComplexityLevel = choice([1,2,3]) # goes up to 3 but needs enzyme breakdown BiologicalComplexityLevel = 2 RDens, RDiv, RRich, Mu, Maint, ct, IndID, RID, N, T, R, PRODI, PRODQ = [0]*13 ADList, ADs, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth, GrowthList, MaintList, RVals, \ DispList, EVList, TLList = [list([]) for _ in xrange(12)] SpeciesIDs, IndX, IndY, IndIDs, Qs, RX, RY, RIDs, RList, RVals, Gs, Ms, \ Ds, Rs, PRODIs, Ns, RDENs, RDIVs, RRICHs, MUs, MAINTs, encList, Ragg, Iagg = [list([]) for _ in xrange(24)] if u0 == max(Rates): #sim += 1 width, height, seedCom, m, r, gmax, maintmax, dmax, envgrads, Rates, pmax, mmax, std = rp.get_rand_params(fixed) GrowthDict, MaintDict, MainFactorDict, RPFDict, EnvD, RD, DispDict,\ EnvD = {}, {}, {}, {}, {}, {}, {}, {} enzyme_field = [0]*(width*height) p = 0 BurnIn = 'not done' Ns.append(N) rr = len(RIDs) numD = ADList.count('d') pD = 0.0 if N > 0: pD = round((numD/N*100), 2) Title = ['Active individuals (red) consume resources, grow, reproduce, go dormant (gray) and die in complex resource-limited environment.\n \ Resource complexity: ' + str(ResourceComplexityLevel) + ', Trophic complexity: ' + str(TrophicComplexityLevel) + ', \ Spatial complexity: ' + str(SpatialComplexityLevel) + ' N: '+str(N)+', Resources: '+str(rr)+', ct: '+str(ct)+ ', \ %Dormant: '+str(pD) + '\n# of inflowing resources: ' + str(r) + ', Aggregation: ' + str(round(std,2))] txt.set_text(' '.join(Title)) #ax1.set_ylim(0, height) #ax1.set_xlim(0, width) plot_system = 'yes' if plot_system == 'yes': ##### PLOTTING THE SYSTEM ############################################## resource_scatImage.remove() Ind_scatImage.remove() plot2.remove() plot3.remove() plot4.remove() colorlist = [] ind_sizelist = [] res_sizelist = [] for val in RVals: res_sizelist.append(val*200) for i, val in enumerate(SpeciesIDs): if ADList[i] == 'a': colorlist.append('red') elif ADList[i] == 'd': colorlist.append('0.3') ind_sizelist.append(Qs[i] * 1000) resource_scatImage = ax1.scatter(RX, RY, s = res_sizelist, c = 'w', edgecolor = 'SpringGreen', lw = 2.0, alpha=0.7) Ind_scatImage = ax1.scatter(IndX, IndY, s = ind_sizelist, c = colorlist, edgecolor = '0.2', lw = 0.2, alpha=0.8) ax2 = fig.add_subplot(2,2,2) # initiate 2nd plot ax3 = fig.add_subplot(2,2,3) # initiate 3rd plot ax4 = fig.add_subplot(2,2,4) # initiate 4th plot plot2 = ax2.scatter([0],[0], alpha=0) plot3 = ax3.scatter([0],[0], alpha=0) plot4 = ax4.scatter([0],[0], alpha=0) if len(Ns) >= 50: if BurnIn == 'not done': AugmentedDickeyFuller = sta.adfuller(Ns) val, p = AugmentedDickeyFuller[0:2] if p >= 0.05: Ns.pop(0) elif p < 0.05 or isnan(p) == True: BurnIn = 'done' Ns = [Ns[-1]] # only keep the most recent N value if ct == 100: BurnIn = 'done' Ns = [Ns[-1]] # only keep the most recent N value if BurnIn == 'done': PRODIs.append(PRODI) if len(RList) > 0: RDens = len(RList)/(height*width) RDENs.append(RDens) R = len(RX) Rs.append(R) encList.append(encounters) if N >= 1: if N >= 2: Imor = spatial.morisitas(IndX, IndY, width, height) Iagg.append(Imor) if R >= 1: q = min([20, R]) #avg_dist1 = spatial.avg_dist(IndX, RX, IndY, RY, q) avg_dist2 = spatial.nearest_neighbor(IndX, RX, IndY, RY, q) AVG_DIST.append(avg_dist2) if R >= 2: Rmor = spatial.morisitas(RX, RY, width, height) Ragg.append(Rmor) spD = DispDict.values() spM = MaintDict.values() spG = GrowthDict.values() SpecDisp.append(mean(spD)) SpecMaint.append(mean(spM)) SpecGrowth.append(mean(spG)) Gs.append(mean(GrowthList)) Ms.append(mean(MaintList)) Ds.append(mean(DispList)) numD = ADList.count('d') ADs.append(numD/len(ADList)) Deadlist.append(numDead) if len(Ns) >= 20: print '%4s' % sim, ' r:','%4s' % r, ' R:','%4s' % int(round(mean(Rs))), ' N:','%5s' % int(round(mean(Ns))), \ ' Dormant:', '%5s' % round(mean(ADs),3), ' Encounters:','%5s' % round(mean(encList),2), ' Spatial:', SpatialComplexityLevel, \ 'Resource:', ResourceComplexityLevel, 'Trophic:', TrophicComplexityLevel#, \ #'Agg(I):', round(mean(Iagg), 2), 'Agg(R):', round(mean(Ragg),2) Rates = np.roll(Rates, -1, axis=0) u0 = Rates[0] if static == 'no': TrophicComplexityLevel = choice([1,2,3,4]) # SpatialComplexityLevel = choice([1,2,3]) # goes up to 3 ResourceComplexityLevel = choice([1,2,3]) # goes up to 3 but needs enzyme breakdown BiologicalComplexityLevel = 2 RDens, RDiv, RRich, Mu, Maint, ct, IndID, RID, N, T, R, PRODI, PRODQ, numD = [0]*14 ADList, ADs, AVG_DIST, SpecDisp, SpecMaint, SpecGrowth, GrowthList, MaintList, RVals, \ DispList, EVList, TLList, Deadlist = [list([]) for _ in xrange(13)] SpeciesIDs, IndX, IndY, IndIDs, Qs, RX, RY, RIDs, RList, RVals, Gs, Ms, \ Ds, Rs, PRODIs, Ns, RDENs, RDIVs, RRICHs, MUs, MAINTs, encList, Ragg, Iagg = [list([]) for _ in xrange(24)] p = 0 BurnIn = 'not done' if u0 == max(Rates): sim += 1 width, height, seedCom, m, r, gmax, maintmax, dmax, envgrads, Rates, pmax, mmax, std = rp.get_rand_params(fixed) GrowthDict, MaintDict, MainFactorDict, RPFDict, EnvD, RD, DispDict,\ EnvD = {}, {}, {}, {}, {}, {}, {}, {} enzyme_field = [0]*(width*height) ####################### REPLACE ENVIRONMENT ######################## ax1 = fig.add_subplot(2,2,1) ax2 = fig.add_subplot(2,2,2) # initiate first plot ax3 = fig.add_subplot(2,2,3) # initiate first plot ax4 = fig.add_subplot(2,2,4) # initiate first plot
if xi == 0: ResLists, ResDict, res_in = bide.ResIn(ResLists, ResDict, params, ct, ComplexityLevels) # Immigration elif xi == 1: IndDict, SpDicts = bide.immigration(IndDict, SpDicts, params, ct, ComplexityLevels) # Individual Dispersal elif xi == 2 and '-none-' not in SC: IndDict, ResList, ResDict, numDead = bide.dispersal(IndDict, SpDicts, ResLists, ResDict, params, ComplexityLevels, numDead) # Resource Dispersal elif xi == 3: ResLists = bide.res_dispersal(ResLists, params, ct, ComplexityLevels) # Consumption elif xi == 4: ResLists, ResDict, IndDict, encounters, numDead = bide.consume(IndDict, SpDicts, ResLists, ResDict, params, ComplexityLevels, numDead) # Reproduction elif xi == 5: PRODI, IndDicts, ResLists, ResDict, numDead = bide.reproduce(IndDict, SpDicts, ResLists, ResDict, params, ComplexityLevels, numDead) # Maintenance elif xi == 6: IndDict, ResLists, ResDict, numDead = bide.maintenance(IndDict, SpDicts, ResLists, ResDict, ComplexityLevels, numDead) # Transition to or from dormancy elif xi == 7: IndDict, ResLists, ResDict, numDead = bide.transition(IndDict, SpDicts, ResLists, ResDict, ComplexityLevels, numDead) t2 = time.clock() - t1 if t2 >= 0.12: break #if t2 < 0.12: time.sleep(0.12 - t2) N = len(IndDict.keys()) Ns.append(N) Rvs = ResLists[0] Rvs.sort()
def nextFrame(arg): # arg is the frame number print arg plot_system = 'yes' logdata = 'no' global width, height, length, Rates, u0, shift, sign, rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW global SpColorDict, GrowthDict, ResUseDict, DispDict, MaintDict, one9th, four9ths, one36th, barrier global IndIDs, Qs, IndID, IndTimeIn, IndExitAge, IndXcoords, IndYcoords, IndZcoords, Ind_scatImage, SpeciesIDs global TracerYcoords, tracer_scatImage, TracerTimeIn, TracerZcoords, TracerIDs, TracerExitAge, TracerXcoords global ResTypes, ResXcoords, ResYcoords, ResZcoords, ResID, ResIDs, ResVals, ResTimeIn, ResExitAge, resource_scatImage global avg_Q, avg_maint, avg_disp, avg_res, avgTau, avg_growth, avg_prey, avg_symb, avg_parasite global barrierN, barrierS, barrierE, barrierW, barrierNE, barrierNW, barrierSE, barrierSW global BarrierWidth, BarrierHeight, BarrierXcoords1, BarrierYcoords1, BarrierXcoords2, BarrierYcoords2 global ct1, Mu, Maint, motion, D, reproduction, speciation, predators, parasites, symbionts global env_gradient, seedcom, m, r, nr, rmax, sim, RAD, splist, N, TracerTau, IndTau, ct global ResDens, ResDiv, ResRich, S, ES, Ev, BP, SD, Nm, sk, T, R, LowerLimit, prod_i, prod_q, viscosity, alpha global Ts, Rs, PRODIs, PRODQs, Ns, TRACERTAUs, INDTAUs, RESDENs, RESDIVs, RESRICHs, Ss, ESs, EVs, BPs, SDs, NMAXs, SKs, MUs, MAINTs, RESTAUs for step in range(1): # adjust number of steps for smooth animation # inflow of tracers TracerIDs, TracerTimeIn, TracerXcoords, TracerYcoords, TracerZcoords = bide.NewTracers(motion, TracerIDs, TracerXcoords, TracerYcoords, TracerZcoords, TracerTimeIn, width, height, length, u0, D) # inflow of resources ResTypes, ResVals, ResXcoords, ResYcoords, ResZcoords, ResIDs, ResID, ResTimeIn = bide.ResIn(motion, ResTypes, ResVals, ResXcoords, ResYcoords, ResZcoords, ResID, ResIDs, ResTimeIn, r, rmax, nr, width, height, length, u0, D) # immigration if ct == 0: ct = 1 SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, MaintDict, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, ResUseDict = bide.immigration(motion, seedcom, SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, width, height, length, MaintDict, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, ResUseDict, nr, u0, alpha, D) else: SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, MaintDict, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, ResUseDict = bide.immigration(motion, m, SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, width, height, length, MaintDict, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, ResUseDict, nr, u0, alpha, D) if motion == 'fluid' or motion == 'conveyor': # a 'conveyor' belt action wherein y-coordinates never change occurs when there is 0 turbulence # stream & collide nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, shift, sign = LBM.stream([nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, shift, sign]) rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW = LBM.collide(viscosity, rho, ux, uy, n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, u0) # dispersal Lists = [SpeciesIDs, IndIDs, IndID, Qs, DispDict] if len(SpeciesIDs) > 0: SpeciesIDs, IndXcoords, IndYcoords, IndExitAge, IndIDs, IndID, IndTimeIn, Qs = bide.fluid_movement('individual', Lists, IndTimeIn, IndExitAge, IndXcoords, IndYcoords, ux, uy, width, height, u0) # resource flow Lists = [ResTypes, ResIDs, ResID, ResVals] if len(ResTypes) > 0: ResTypes, ResXcoords, ResYcoords, ResExitAge, ResIDs, ResID, ResTimeIn, ResVals = bide.fluid_movement('resource', Lists, ResTimeIn, ResExitAge, ResXcoords, ResYcoords, ux, uy, width, height, u0) # moving tracer particles if len(TracerIDs) > 0: TracerIDs, TracerXcoords, TracerYcoords, TracerExitAge, TracerTimeIn = bide.fluid_movement('tracer', TracerIDs, TracerTimeIn, TracerExitAge, TracerXcoords, TracerYcoords, ux, uy, width, height, u0) elif motion == 'random_walk' or motion == 'unidirectional': # Moving tracer particles if len(TracerIDs) > 0: TracerIDs, TracerExitAge, TracerTimeIn, TracerXcoords, TracerYcoords, TracerZcoords = bide.nonfluid_movement('tracer', motion, TracerIDs, TracerExitAge, TracerTimeIn, TracerXcoords, TracerYcoords, TracerZcoords, width, height, length, u0, D) # Moving resource particles if len(ResTypes) > 0: Lists = [ResTypes, ResIDs, ResVals] Lists, ResExitAge, ResTimeIn, Xcoords, Ycoords, Zcoords = bide.nonfluid_movement('resource', motion, Lists, ResExitAge, ResTimeIn, ResXcoords, ResYcoords, ResZcoords, width, height, length, u0, D) ResTypes, ResIDs, ResVals = Lists # Moving individuals if len(SpeciesIDs) > 0: Lists = [SpeciesIDs, IndIDs, Qs, DispDict] Lists, IndExitAge, IndTimeIn, Xcoords, Ycoords, Zcoords = bide.nonfluid_movement('individual', motion, Lists, IndExitAge, IndTimeIn, IndXcoords, IndYcoords, IndZcoords, width, height, length, u0, D) SpeciesIDs, IndIDs, Qs = Lists # consume & reproduce p1, q1 = [len(IndIDs), sum(Qs)] ResTypes, ResVals, ResIDs, ResID, ResTimeIn, ResExitAge, ResXcoords, ResYcoords, ResZcoords, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndXcoords, IndYcoords, IndZcoords = bide.consume(ResTypes, ResVals, ResIDs, ResID, ResXcoords, ResYcoords, ResZcoords, ResTimeIn, ResExitAge, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndXcoords, IndYcoords, IndZcoords, width, height, length, GrowthDict, ResUseDict, DispDict, D) SpeciesIDs, Qs, IDs, ID, TimeIn, Xcoords, Ycoords, Zcoords, GrowthDict, DispDict = bide.reproduce(reproduction, speciation, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndXcoords, IndYcoords, IndZcoords, width, height, length, GrowthDict, DispDict, SpColorDict, ResUseDict, MaintDict, D, nr) PRODI, PRODQ = [len(IndIDs) - p1, sum(Qs) - q1] # maintenance SpeciesIDs, Xcoords, Ycoords, Zcoords, IndExitAge, IndIDs, IndTimeIn, Qs = bide.maintenance(SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, IndExitAge, SpColorDict, MaintDict, IndIDs, IndTimeIn, Qs, D) """ # predation p1, n1 = [len(PredIDs), len(IndIDs)] PredIDs, PredID, PredTimeIn, PredXcoords, PredYcoords, PredZcoords, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndXcoords, IndYcoords, IndZcoords = bide.predation(predation(PredIDs, PredID, PredXcoords, PredYcoords, PredZcoords, PredTimeIn, IndExitAge, SpeciesIDs, Qs, IndIDs, IndID, IndTimeIn, IndXcoords, IndYcoords, IndZcoords, width, height, length, D) pred_i, pred_n = [len(PredIDs) - p1, sum(IndIDs) - n1] """ ########## PLOT THE SYSTEM ################################################# if D == 3: ax = fig.add_subplot(111, projection='3d') else: ax = fig.add_subplot(111) plt.tick_params(axis='both', which='both', bottom='off', top='off', left='off', right='off', labelbottom='off', labelleft='off') if len(SpeciesIDs) >= 1: RAD, splist = bide.GetRAD(SpeciesIDs) else: RAD, splist, N, S = [], [], 0, 0 N, S, tt, rr = sum(RAD), len(RAD), len(TracerIDs), len(ResIDs) Title = ['Individuals consume resources, grow, reproduce, and die as they move through the environment.' '\nAverage speed on the x-axis is '+str(u0)+' units per time step. '+str(len(TracerExitAge))+' tracers have passed through.', '\nMotion is '+motion+'; N: '+str(N)+', S: '+str(S)+', tracers: '+str(tt)+', resources: '+str(rr)+', replicate: '+str(len(Ns))] txt.set_text(' '.join(Title)) ax.set_ylim(0, height) ax.set_xlim(0, width) if D == 3: ax.set_zlim(0,length) if plot_system == 'yes': ##### PLOTTING THE INDIVIDUALS ############################################ resource_scatImage.remove() tracer_scatImage.remove() Ind_scatImage.remove() colorlist = [] sizelist = [] for i, val in enumerate(SpeciesIDs): colorlist.append(SpColorDict[val]) sizelist.append(Qs[i] * 1000) if D == 2: resource_scatImage = ax.scatter(ResXcoords, ResYcoords, s = ResVals, c = 'w', edgecolor = 'SpringGreen', lw = 0.6, alpha=0.7) elif D == 3: resource_scatImage = ax.scatter(ResXcoords, ResYcoords, ResZcoords, s = ResVals, c = 'w', edgecolor = 'SpringGreen', lw = 0.6, alpha=0.2) if D == 2: Ind_scatImage = ax.scatter(IndXcoords, IndYcoords, s = sizelist, c = colorlist, edgecolor = '0.2', lw = 0.2, alpha=0.9) elif D == 3: Ind_scatImage = ax.scatter(IndXcoords, IndYcoords, IndZcoords, s = Qs, c = colorlist, edgecolor = '0.2', lw = 0.2, alpha=0.99) if D == 2: tracer_scatImage = ax.scatter(TracerXcoords, TracerYcoords, s = 200, c = 'r', marker='*', lw=0.0, alpha=0.6) elif D == 3: tracer_scatImage = ax.scatter(TracerXcoords, TracerYcoords, TracerZcoords, s = 200, c = 'r', marker='*', lw=0.0, alpha=0.8) plt.draw() if u0 == 1.0: LowerLimit = 50 elif u0 >= 0.5: LowerLimit = 40 elif u0 >= 0.1: LowerLimit = 20 elif u0 > 0.01: LowerLimit = 10 elif u0 == 0.01: LowerLimit = 5 # Record model values and reset, or not if len(TracerExitAge) >= LowerLimit or N == 0: PRODIs.append(PRODI) PRODQs.append(PRODQ) RESTAUs.append(np.mean(ResExitAge)) INDTAUs.append(np.mean(IndExitAge)) TRACERTAUs.append(np.mean(TracerExitAge)) # Examining the resource RAD if len(ResTypes) > 0: ResRAD, Rlist = bide.GetRAD(ResTypes) ResDens = sum(ResTypes)/(height*width) ResDiv = float(metrics.Shannons_H(ResRAD)) ResRich = len(Rlist) RESDENs.append(ResDens) RESDIVs.append(ResDiv) RESRICHs.append(ResRich) # Residence times for tracers and Inds TracerTau, IndTau, ResTau = [np.mean(TracerExitAge), np.mean(IndExitAge), np.mean(ResExitAge)] # Number of tracers, resource particles, and individuals T, R, N = len(TracerIDs), len(ResIDs), len(SpeciesIDs) if logdata == 'yes': IndRTD = str(IndExitAge).strip('[]') TracerRTD = str(TracerExitAge).strip('[]') ResRTD = str(ResExitAge).strip('[]') OUT4 = open(mydir + '/GitHub/hydrobide/results/simulated_data/IndRTD.csv','a') OUT5 = open(mydir + '/GitHub/hydrobide/results/simulated_data/TracerRTD.csv','a') OUT6 = open(mydir + '/GitHub/hydrobide/results/simulated_data/ResRTD.csv','a') print>>OUT4, ct1,',', sim,',', IndRTD print>>OUT5, ct1,',', sim,',', TracerRTD print>>OUT6, ct1,',', sim,',', ResRTD OUT4.close() OUT5.close() OUT6.close() TracerExitAge, IndExitAge, ResExitAge= [],[],[] Ts.append(T) Rs.append(R) if N == 0: Ns.append(0) Ss.append(0) if N >= 1: RAD, splist = bide.GetRAD(SpeciesIDs) RAD, splist = zip(*sorted(zip(RAD, splist), reverse=True)) S = len(RAD) Ss.append(S) Ns.append(N) # Specific Growth rate and Maintenance mu, maint = [0.0, 0.0] for i, sp in enumerate(splist): mu += (RAD[i] * GrowthDict[sp]) maint += (RAD[i] * MaintDict[sp]) Mu, Maint = [mu/N, maint/N] MUs.append(Mu) MAINTs.append(Maint) # Evenness, Dominance, and Rarity measures Ev = metrics.e_var(RAD) EVs.append(Ev) ES = metrics.e_simpson(RAD) ESs.append(ES) Nm, BP = [max(RAD), Nm/N] NMAXs.append(Nm) BPs.append(BP) SD = metrics.simpsons_dom(RAD) SDs.append(SD) sk = stats.skew(RAD) SKs.append(sk) process = psutil.Process(os.getpid()) mem = round(process.get_memory_info()[0] / float(2 ** 20), 1) # return the memory usage in MB if len(Ns) >= 1 or N == 0: ct = 0 T, R, PRODI, PRODQ, N, RESTAU, TRACERTAU, INDTAU, RESDENS, RESDIV, RESRICH, S, ES, EV, BP, SD, NMAX, SK, MU, MAINT = [np.mean(Ts), np.mean(Rs), np.mean(PRODIs), np.mean(PRODQs), np.mean(Ns), np.mean(RESTAUs), np.mean(TRACERTAUs), np.mean(INDTAUs), np.mean(RESDENs), np.mean(RESDIVs), np.mean(RESRICHs), np.mean(Ss), np.mean(ESs), np.mean(EVs), np.mean(BPs), np.mean(SDs), np.mean(NMAXs), np.mean(SKs), np.mean(MUs), np.mean(MAINTs)] print ct, sim, ' N:', int(round(N)), 'S:', int(round(S)), ' pI:', int(prod_i), 'pQ:', int(prod_q), ': flow:', u0, ' MB:',int(round(mem)) if logdata == 'yes': SString = str(splist).strip('()') RADString = str(RAD).strip('()') OUT1 = open(mydir + '/GitHub/hydrobide/results/simulated_data/SimData.csv','a') OUT2 = open(mydir + '/GitHub/hydrobide/results/simulated_data/RADs.csv','a') OUT3 = open(mydir + '/GitHub/hydrobide/results/simulated_data/Species.csv','a') print>>OUT1, ct1,',', sim,',', motion,',', D,',', PRODI,',', PRODQ,',', r,',', nr,',', rmax,',', BarrierWidth,',', BarrierHeight,',', alpha,',', seedcom,',', LowerLimit,',', u0,',', width,',', height,',', viscosity,',', N,',', m,',',RESTAU,',',TRACERTAU,',', INDTAU,',', RESDENS,',', RESDIV,',', RESRICH,',', S,',', ES,',', EV,',', BP,',', SD,',', NMAX,',', SK,',', MU,',', MAINT,',',T,',',R print>>OUT2, RADString print>>OUT3, SString OUT1.close() OUT2.close() OUT3.close() ct1 += 1 if u0 == min(Rates): SpColorDict, GrowthDict, MaintDict, ResUseDict, ResColorDict, DispDict = {}, {}, {}, {}, {}, {} width, height, length, alpha, motion, D, reproduction, speciation, predators, parasites, env_gradient, seedcom, m, r, nr, rmax = get_rand_params() sim += 1 alpha = np.random.uniform(0.9, 0.999) print '\n' Rates = np.roll(Rates, -1, axis=0) u0 = Rates[0] # initial in-flow speed Ts, Rs, PRODIs, PRODQs, Ns, RESTAUs, TRACERTAUs, INDTAUs, RESDENs, RESDIVs, RESRICHs, Ss, ESs, EVs, BPs, SDs, NMAXs, SKs, MUs, MAINTs = [], [],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[] TracerTau, IndTau, ResDens, ResDiv, ResRich, S, ES, Ev, BP, SD, Nm, sk, Mu, Maint = [0,0,0,0,0,0,0,0,0,0,0,0,0,0] IndTimeIn, SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, IndIDs, Qs, IndExitAge = [],[],[],[],[],[],[],[] TracerXcoords, TracerYcoords, TracerZcoords, TracerExitAge, TracerIDs, TracerTimeIn = [],[],[],[],[],[] ResXcoords, ResYcoords, ResZcoords, ResIDs, ResTypes, ResExitAge, ResTimeIn, ResVals = [],[],[],[],[],[],[],[] if motion == 'fluid' or motion == 'conveyor': n0, nN, nS, nE, nW, nNE, nNW, nSE, nSW, barrier, rho, ux, uy, barrierN, barrierS, barrierE, barrierW, barrierNE, barrierNW, barrierSE, barrierSW, BarrierXcoords1, BarrierYcoords1, BarrierXcoords2, BarrierYcoords2 = LBM.SetLattice(u0, viscosity, width, height, left1, bottom1, left2, bottom2, BarrierWidth, BarrierHeight, BarrierXcoords1, BarrierYcoords1, BarrierXcoords2, BarrierYcoords2) if seedcom > 0: # inflow of resources ResTypes, ResVals, ResXcoords, ResYcoords, ResZcoords, ResIDs, ResID, ResTimeIn = bide.ResIn(motion, ResTypes, ResVals, ResXcoords, ResYcoords, ResZcoords, ResID, ResIDs, ResTimeIn, r, rmax, nr, width, height, length, u0, D) # immigration SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, MaintDict, GrowthDict, DispDict, SpColorDict, IDs, ID, TimeIn, Qs, ResUseDict = bide.immigration(motion, m, SpeciesIDs, IndXcoords, IndYcoords, IndZcoords, width, height, length, MaintDict, GrowthDict, DispDict, SpColorDict, IndIDs, IndID, IndTimeIn, Qs, ResUseDict, nr, u0, alpha, D) ####################### REPLACE ENVIRONMENT ############################ if D == 3: ax = fig.add_subplot(111, projection='3d') elif D == 2: ax = fig.add_subplot(111)