Exemple #1
0
def test_index_associated_false(testvalidator):
    testvalidator = BIDSValidator(index_associated=False)
    target_list = [
        "/code/", "/derivatives/", "/sourcedata/", "/stimuli/", "/.git/"
    ]

    for item in target_list:
        result = testvalidator.is_associated_data(item)
        assert not result
Exemple #2
0
def drp_seed_fc():
    import numpy as np
    from os import path
    #from labbookdb.report.tracking import treatment_group, append_external_identifiers
    from samri.plotting.overview import multiplot_matrix, multipage_plot
    from samri.utilities import bids_substitution_iterator
    from samri.analysis import fc
    from samri.utilities import N_PROCS

    N_PROCS = max(N_PROCS - 8, 2)

    from bids.grabbids import BIDSLayout
    from bids.grabbids import BIDSValidator
    import os

    base = '~/ni_data/ofM.dr/bids/preprocessing/generic/'
    base = os.path.abspath(os.path.expanduser(base))
    validate = BIDSValidator()
    for x in os.walk(base):
        print(x[0])
        print(validate.is_bids(x[0]))
    layout = BIDSLayout(base)
    df = layout.as_data_frame()
    df = df[df.type.isin(['cbv'])]
    print(df)

    #substitutions = bids_substitution_iterator(
    #	list(df['session'].unique()),
    #	all_subjects,
    #	["CogB",],
    #	"~/ni_data/ofM.dr/",
    #	"composite",
    #	acquisitions=["EPI",],
    #	check_file_format='~/ni_data/ofM.dr/preprocessing/{preprocessing_dir}/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv.nii.gz')

    #substitutions = df.T.to_dict().values()[:2]
    substitutions = df.T.to_dict().values()
    print(substitutions)

    fc_results = fc.seed_based(
        substitutions,
        "~/ni_data/templates/roi/DSURQEc_drp.nii.gz",
        "/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
        ts_file_template=
        '~/ni_data/ofM.dr/bids/preprocessing/generic/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv.nii.gz',
        save_results=
        "~/ni_data/ofM.dr/bids/fc/DSURQEc_drp/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv_zstat.nii.gz",
        n_procs=N_PROCS,
        cachedir='/mnt/data/joblib')
Exemple #3
0
def drp_seed_fc():
	import numpy as np
	from os import path
	#from labbookdb.report.tracking import treatment_group, append_external_identifiers
	from samri.plotting.overview import multiplot_matrix, multipage_plot
	from samri.utilities import bids_substitution_iterator
	from samri.analysis import fc
	from samri.utilities import N_PROCS

	N_PROCS=max(N_PROCS-8, 2)

	from bids.grabbids import BIDSLayout
	from bids.grabbids import BIDSValidator
	import os

	base = '~/ni_data/ofM.dr/bids/preprocessing/generic/'
	base = os.path.abspath(os.path.expanduser(base))
	validate = BIDSValidator()
	for x in os.walk(base):
		print(x[0])
		print(validate.is_bids(x[0]))
	layout = BIDSLayout(base)
	df = layout.as_data_frame()
	df = df[df.type.isin(['cbv'])]
	print(df)

	#substitutions = bids_substitution_iterator(
	#	list(df['session'].unique()),
	#	all_subjects,
	#	["CogB",],
	#	"~/ni_data/ofM.dr/",
	#	"composite",
	#	acquisitions=["EPI",],
	#	check_file_format='~/ni_data/ofM.dr/preprocessing/{preprocessing_dir}/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv.nii.gz')

	#substitutions = df.T.to_dict().values()[:2]
	substitutions = df.T.to_dict().values()
	print(substitutions)

	fc_results = fc.seed_based(substitutions, "~/ni_data/templates/roi/DSURQEc_drp.nii.gz", "/usr/share/mouse-brain-atlases/dsurqec_200micron_mask.nii",
		ts_file_template='~/ni_data/ofM.dr/bids/preprocessing/generic/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv.nii.gz',
		save_results="~/ni_data/ofM.dr/bids/fc/DSURQEc_drp/sub-{subject}/ses-{session}/func/sub-{subject}_ses-{session}_acq-{acquisition}_task-{task}_cbv_zstat.nii.gz",
		n_procs=N_PROCS,
		cachedir='/mnt/data/joblib')
Exemple #4
0
def bids_data_selection(
    base,
    structural_match,
    functional_match,
    subjects,
    sessions,
    verbose=False,
    joint_conditions=True,
):
    validate = BIDSValidator()
    if verbose:
        for x in os.walk(base):
            print(x[0])
            if validate.is_bids(x[0]):
                print("Is not BIDS-formatted.")
            else:
                print("Detected!")
    layout = BIDSLayout(base)
    df = layout.as_data_frame()
    # drop event files
    df = df[df.type != 'events']
    # rm .json
    df = df.loc[df.path.str.contains('.nii')]
    # generate scan types for later
    df['scan_type'] = ""
    #print(df.path.str.startswith('task', beg=0,end=len('task')))
    beg = df.path.str.find('task-')
    end = df.path.str.find('.')
    #df.loc[df.modality == 'func', 'scan_type'] = 'acq-'+df['acq']+'_task-'+  df.path.str.partition('task-')[2].str.partition('.')[0]
    #df.loc[df.modality == 'anat', 'scan_type'] = 'acq-'+df['acq']+'_' + df['type']
    #TODO: fix task!=type
    df.loc[df.modality == 'func',
           'task'] = df.path.str.partition('task-')[2].str.partition('_')[0]
    df.loc[df.modality == 'func',
           'scan_type'] = 'task-' + df['task'] + '_acq-' + df['acq']
    df.loc[df.modality == 'anat',
           'scan_type'] = 'acq-' + df['acq'] + '_' + df['type']

    #TODO: The following should be collapsed into one criterion category
    if functional_match or structural_match:
        res_df = pd.DataFrame()
        if functional_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in functional_match.keys():
                        _df = _df.loc[_df[match].isin(functional_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, functional_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        if structural_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in structural_match.keys():
                        _df = _df.loc[_df[match].isin(structural_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, structural_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        df = res_df

    if (subjects):
        df = filter_data(df, 'subject', subjects)
    if (sessions):
        df = filter_data(df, 'session', sessions)
    return df
Exemple #5
0
def bids_autograb(bids_dir):
    bids_dir = path.abspath(path.expanduser(bids_dir))
    validate = BIDSValidator()
    layout = BIDSLayout(bids_dir)
    df = layout.as_data_frame()
    return df
Exemple #6
0
def bids_data_selection(
    base,
    structural_match,
    functional_match,
    subjects,
    sessions,
    verbose=False,
    joint_conditions=True,
):
    validate = BIDSValidator()
    if verbose:
        for x in os.walk(base):
            print(x[0])
            if validate.is_bids(x[0]):
                print("Is not BIDS-formatted.")
            else:
                print("Detected!")
    layout = BIDSLayout(base)
    df = layout.as_data_frame()

    # Not crashing if the run field is not present
    try:
        # Run is for some reason recorded as float
        df.loc[df['run'].notna(), 'run'] = df.loc[df['run'].notnull(),
                                                  'run'].apply(int).apply(str)
    except KeyError:
        pass

    # drop event files
    df = df[df.type != 'events']

    # rm .json
    df = df.loc[df.path.str.contains('.nii')]

    # generate scan types for later
    df['scan_type'] = ""

    #print(df.path.str.startswith('task', beg=0,end=len('task')))
    beg = df.path.str.find('task-')
    end = df.path.str.find('.')
    #df.loc[df.modality == 'func', 'scan_type'] = 'acq-'+df['acq']+'_task-'+  df.path.str.partition('task-')[2].str.partition('.')[0]
    #df.loc[df.modality == 'anat', 'scan_type'] = 'acq-'+df['acq']+'_' + df['type']
    #TODO: fix task!=type
    if 'func' in df.columns:
        df.loc[df.modality == 'func', 'task'] = df.path.str.partition(
            'task-')[2].str.partition('_')[0]
        df.loc[df.modality == 'func',
               'scan_type'] = 'task-' + df['task'] + '_acq-' + df['acq']
    if 'anat' in df.columns:
        df.loc[df.modality == 'anat',
               'scan_type'] = 'acq-' + df['acq'] + '_' + df['type']

    # Unclear in current BIDS specification, we refer to BOLD/CBV as modalities and func/anat as types
    df = df.rename(columns={'modality': 'type', 'type': 'modality'})

    #TODO: The following should be collapsed into one criterion category
    if functional_match or structural_match:
        res_df = pd.DataFrame()
        if functional_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in functional_match.keys():
                        _df = _df.loc[_df[match].isin(functional_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, functional_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        if structural_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in structural_match.keys():
                        _df = _df.loc[_df[match].isin(structural_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, structural_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        df = res_df

    if subjects:
        df = filter_data(df, 'subject', subjects)
    if sessions:
        df = filter_data(df, 'session', sessions)

    return df
Exemple #7
0
def bids_data_selection(
    base,
    structural_match,
    functional_match,
    subjects,
    sessions,
    verbose=False,
    joint_conditions=True,
):
    """
	Creates a Pandas Dataframe descriptor from a BIDS datapath, optionally filtering out conditions.

	Parameters
	----------

	base : str
		path specifying the root directory of the BIDS data
	structural_match : dict or bool
		Dictionary specifying a whitelist of BIDS field identifiers.
		False if no whitelist is specified.
	functional_match : dict or bool
		Dictionary specifying a whitelist of BIDS field identifiers.
		False if no whitelist is specified.
	subjects: list or bool
		A list of subjects which may be present in the 'subjects' column of the created Pandas DataFrame, 'df'.
		False if user does not want to filter DataFrame by subjects.
	sessions: list or bool
		A list of session names which may be present in the 'sessions' column of the created Pandas DataFrame, 'df'.
		False if user does not want to filter DataFrame by sessions.

	Returns
	-------

	df : pandas.DataFrame
		A Pandas DataFrame with information corresponding to the whitelisted BIDS identifiers and optionally filtered by subjects and/or sessions.
	"""
    validate = BIDSValidator()
    if verbose:
        for x in os.walk(base):
            print(x[0])
            if validate.is_bids(x[0]):
                print("Is not BIDS-formatted.")
            else:
                print("Detected!")
    #layout = BIDSLayout(base, validate=False)
    layout = BIDSLayout(base, validate=False, derivatives=True)
    try:
        df = layout.as_data_frame()
    except AttributeError:
        df = layout.to_df()

    # Not crashing if the run field is not present
    try:
        # Run is for some reason recorded as float
        df.loc[df['run'].notna(), 'run'] = df.loc[df['run'].notnull(),
                                                  'run'].apply(int).apply(str)
    except KeyError:
        pass

    if verbose:
        print(df)
        print(df.columns)
    # drop event files
    # PyBIDS 0.6.5 and 0.10.2 compatibility
    try:
        df = df[df.type != 'events']
    except AttributeError:
        df = df[df.suffix != 'events']

    # rm .json
    df = df.loc[df.path.str.contains('.nii')]

    # generate scan types for later
    df['scan_type'] = ""

    #print(df.path.str.startswith('task', beg=0,end=len('task')))
    beg = df.path.str.find('task-')
    end = df.path.str.find('.')
    #df.loc[df.modality == 'func', 'scan_type'] = 'acq-'+df['acq']+'_task-'+  df.path.str.partition('task-')[2].str.partition('.')[0]
    #df.loc[df.modality == 'anat', 'scan_type'] = 'acq-'+df['acq']+'_' + df['type']
    #TODO: fix task!=type
    if 'func' in df.columns:
        df.loc[df.modality == 'func', 'task'] = df.path.str.partition(
            'task-')[2].str.partition('_')[0]
        df.loc[df.modality == 'func',
               'scan_type'] = 'task-' + df['task'] + '_acq-' + df['acq']
    if 'anat' in df.columns:
        df.loc[df.modality == 'anat',
               'scan_type'] = 'acq-' + df['acq'] + '_' + df['type']

    # Unclear in current BIDS specification, we refer to BOLD/CBV as modalities and func/anat as types
    # Can be removed after Pybids 0.10.2 migration
    df = df.rename(columns={'modality': 'type', 'type': 'modality'})

    #TODO: The following should be collapsed into one criterion category
    if functional_match or structural_match:
        res_df = pd.DataFrame()
        if functional_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in functional_match.keys():
                        _df = _df.loc[_df[match].isin(functional_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, functional_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        if structural_match:
            _df = deepcopy(df)
            try:
                if joint_conditions:
                    for match in structural_match.keys():
                        _df = _df.loc[_df[match].isin(structural_match[match])]
                    res_df = res_df.append(_df)
                else:
                    for match in structural_match.keys():
                        _df = filter_data(_df, match, structural_match[match])
                        res_df = res_df.append(_df)
            except:
                pass
        df = res_df

    if subjects:
        df = filter_data(df, 'subject', subjects)
    if sessions:
        df = filter_data(df, 'session', sessions)

    return df
Exemple #8
0
def bids_data_selection(base, structural_match, functional_match, subjects, sessions,
	verbose=False,
	joint_conditions=True,
	):
	validate = BIDSValidator()
	if verbose:
		for x in os.walk(base):
			print(x[0])
			if validate.is_bids(x[0]):
				print("Is not BIDS-formatted.")
			else:
				print("Detected!")
	layout = BIDSLayout(base)
	df = layout.as_data_frame()

	# Run is for some reason recorded as float
	df.loc[df['run'].notna(),'run'] = df.loc[df['run'].notnull(),'run'].apply(int).apply(str)
	#df['run'] = df['run'].astype(int)

	# drop event files
	df = df[df.type != 'events']

	# rm .json
	df = df.loc[df.path.str.contains('.nii')]

	# generate scan types for later
	df['scan_type'] = ""

	#print(df.path.str.startswith('task', beg=0,end=len('task')))
	beg = df.path.str.find('task-')
	end = df.path.str.find('.')
	#df.loc[df.modality == 'func', 'scan_type'] = 'acq-'+df['acq']+'_task-'+  df.path.str.partition('task-')[2].str.partition('.')[0]
	#df.loc[df.modality == 'anat', 'scan_type'] = 'acq-'+df['acq']+'_' + df['type']
	#TODO: fix task!=type
	if 'func' in df.columns:
		df.loc[df.modality == 'func', 'task'] = df.path.str.partition('task-')[2].str.partition('_')[0]
		df.loc[df.modality == 'func', 'scan_type'] = 'task-' + df['task'] + '_acq-'+ df['acq']
	if 'anat' in df.columns:
		df.loc[df.modality == 'anat', 'scan_type'] = 'acq-'+df['acq'] +'_' + df['type']

	#TODO: The following should be collapsed into one criterion category
	if functional_match or structural_match:
		res_df = pd.DataFrame()
		if functional_match:
			_df = deepcopy(df)
			try:
				if joint_conditions:
					for match in functional_match.keys():
						_df = _df.loc[_df[match].isin(functional_match[match])]
					res_df = res_df.append(_df)
				else:
					for match in structural_match.keys():
						_df = filter_data(_df, match, functional_match[match])
						res_df = res_df.append(_df)
			except:
				pass
		if structural_match:
			_df = deepcopy(df)
			try:
				if joint_conditions:
					for match in structural_match.keys():
						_df = _df.loc[_df[match].isin(structural_match[match])]
					res_df = res_df.append(_df)
				else:
					for match in structural_match.keys():
						_df = filter_data(_df, match, structural_match[match])
						res_df = res_df.append(_df)
			except:
				pass
		df = res_df

	if subjects:
		df = filter_data(df, 'subject', subjects)
	if sessions:
		df = filter_data(df, 'session', sessions)

	# Unclear in current BIDS specification, we refer to BOLD/CBV as modalities and func/anat as types
	df = df.rename(columns={'modality': 'type', 'type': 'modality'})

	return df
Exemple #9
0
def testvalidator():
    return BIDSValidator()