Exemple #1
0
    def test_std(self):
        # Sequence of tests, defined as:
        #   1. Original array shape.
        #   2. Sequence of indexing operations to apply.
        tests = [
            [(30, 40), []],
            [(30, 40), [5]],
            [(500, 30, 40), [slice(3, 6)]],
            [(500, 30, 40), [(slice(None), slice(3, 6))]],
        ]
        axis = 0
        ddof = 0
        for shape, cuts in tests:
            # Define some test data
            size = np.prod(shape)
            raw_data = np.linspace(0, 1, num=size).reshape(shape)

            # "Compute" the biggus standard deviation
            data = _AccessCounter(raw_data)
            array = biggus.ArrayAdapter(data)
            biggus_std = biggus.std(array, axis=axis, ddof=ddof)

            # Compute the NumPy standard deviation, and then wrap the
            # result as an array so we can apply biggus-style indexing.
            np_std_data = np.std(raw_data, axis=axis, ddof=ddof)
            np_std_array = biggus.ArrayAdapter(np_std_data)

            # Check the `std` operation doesn't actually read any data.
            std_array = biggus.std(array, axis=0)
            self.assertIsInstance(std_array, biggus.Array)
            self.assertTrue((data.counts == 0).all())

            for keys in cuts:
                # Check slicing doesn't actually read any data.
                std_array = std_array[keys]
                self.assertIsInstance(std_array, biggus.Array)
                self.assertTrue((data.counts == 0).all())
                # Update the NumPy result to match
                np_std_array = np_std_array[keys]

            # Check resolving `std_array` to a NumPy array only reads
            # each relevant source value once.
            std = std_array.ndarray()
            self.assertTrue((data.counts <= 1).all())

            # Check the NumPy and biggus numeric values match.
            np_std = np_std_array.ndarray()
            np.testing.assert_array_almost_equal(std, np_std)
Exemple #2
0
    def test_sd_and_mean_of_difference(self):
        # MEAN(A - B) and SD(A - B)
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        a_counter = AccessCounter(raw_data * 3)
        a_array = biggus.NumpyArrayAdapter(a_counter)
        b_counter = AccessCounter(raw_data)
        b_array = biggus.NumpyArrayAdapter(b_counter)

        sub_array = biggus.sub(a_array, b_array)
        mean_array = biggus.mean(sub_array, axis=0)
        std_array = biggus.std(sub_array, axis=0)
        mean, std = biggus.ndarrays([mean_array, std_array])

        # Are the resulting numbers equivalent?
        np.testing.assert_array_almost_equal(mean,
                                             np.mean(raw_data * 2, axis=0))
        np.testing.assert_array_almost_equal(std,
                                             np.std(raw_data * 2, axis=0))
        # Was the source data read the minimal number of times?
        # (Allow first slice of A and B to be read twice because both
        # `mean` and `std` operations use it to to bootstrap their
        # calculations.)
        self.assert_counts(a_counter.counts[0], [2])
        self.assert_counts(a_counter.counts[1:], [1])
        self.assert_counts(b_counter.counts[0], [2])
        self.assert_counts(b_counter.counts[1:], [1])
Exemple #3
0
 def _check(self, data):
     array = biggus.NumpyArrayAdapter(data)
     result = std(array, axis=0, ddof=0).masked_array()
     expected = ma.std(data, axis=0, ddof=0)
     if expected.ndim == 0:
         expected = ma.asarray(expected)
     np.testing.assert_array_equal(result.filled(), expected.filled())
     np.testing.assert_array_equal(result.mask, expected.mask)
Exemple #4
0
    def test_dual_aggregation(self):
        # Check the aggregation operations don't actually read any data.
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        counter = AccessCounter(raw_data)
        array = biggus.NumpyArrayAdapter(counter)
        mean_array = biggus.mean(array, axis=0)
        std_array = biggus.std(array, axis=0)
        self.assertIsInstance(mean_array, biggus.Array)
        self.assertIsInstance(std_array, biggus.Array)
        self.assertTrue((counter.counts == 0).all())

        mean, std_dev = biggus.ndarrays([mean_array, std_array])

        # Was the source data read just once?
        self.assert_counts(counter.counts, [1])
Exemple #5
0
    def test_dual_aggregation(self):
        # Check the aggregation operations don't actually read any data.
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        counter = AccessCounter(raw_data)
        array = biggus.NumpyArrayAdapter(counter)
        mean_array = biggus.mean(array, axis=0)
        std_array = biggus.std(array, axis=0)
        self.assertIsInstance(mean_array, biggus.Array)
        self.assertIsInstance(std_array, biggus.Array)
        self.assertTrue((counter.counts == 0).all())

        mean, std_dev = biggus.ndarrays([mean_array, std_array])

        # Was the source data read just once?
        self.assert_counts(counter.counts, [1])
Exemple #6
0
    def test_dual_aggregation(self):
        # Check the aggregation operations don't actually read any data.
        shape = (500, 30, 40)
        size = numpy.prod(shape)
        raw_data = numpy.linspace(0, 1, num=size).reshape(shape)
        data = _AccessCounter(raw_data)
        array = biggus.ArrayAdapter(data)
        mean_array = biggus.mean(array, axis=0)
        std_array = biggus.std(array, axis=0)
        self.assertIsInstance(mean_array, biggus.Array)
        self.assertIsInstance(std_array, biggus.Array)
        self.assertTrue((data.counts == 0).all())

        mean, std_dev = biggus.ndarrays([mean_array, std_array])
        # The first slice is read twice because both `mean` and `std`
        # use it to to bootstrap their rolling calculations.
        self.assertTrue((data.counts[0] == 2).all())
        self.assertTrue((data.counts[1:] == 1).all())
Exemple #7
0
    def test_dual_aggregation(self):
        # Check the aggregation operations don't actually read any data.
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        counter = AccessCounter(raw_data)
        array = biggus.NumpyArrayAdapter(counter)
        mean_array = biggus.mean(array, axis=0)
        std_array = biggus.std(array, axis=0)
        self.assertIsInstance(mean_array, biggus.Array)
        self.assertIsInstance(std_array, biggus.Array)
        self.assertTrue((counter.counts == 0).all())

        mean, std_dev = biggus.ndarrays([mean_array, std_array])

        # Was the source data read the minimal number of times?
        # (Allow first slice of A to be read twice because both
        # `mean` and `std` operations use it to to bootstrap their
        # calculations.)
        self.assert_counts(counter.counts[0], [2])
        self.assert_counts(counter.counts[1:], [1])
Exemple #8
0
    def test_sd_and_mean_of_difference(self):
        # MEAN(A - B) and SD(A - B)
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        a_counter = AccessCounter(raw_data * 3)
        a_array = biggus.NumpyArrayAdapter(a_counter)
        b_counter = AccessCounter(raw_data)
        b_array = biggus.NumpyArrayAdapter(b_counter)

        sub_array = biggus.sub(a_array, b_array)
        mean_array = biggus.mean(sub_array, axis=0)
        std_array = biggus.std(sub_array, axis=0)
        mean, std = biggus.ndarrays([mean_array, std_array])

        # Are the resulting numbers equivalent?
        np.testing.assert_array_almost_equal(mean, np.mean(raw_data * 2,
                                                           axis=0))
        np.testing.assert_array_almost_equal(std, np.std(raw_data * 2, axis=0))
        # Was the source data read just once?
        self.assert_counts(a_counter.counts, [1])
        self.assert_counts(b_counter.counts, [1])
Exemple #9
0
    def test_sd_and_mean_of_difference(self):
        # MEAN(A - B) and SD(A - B)
        shape = (500, 30, 40)
        size = np.prod(shape)
        raw_data = np.linspace(0, 1, num=size).reshape(shape)
        a_counter = AccessCounter(raw_data * 3)
        a_array = biggus.NumpyArrayAdapter(a_counter)
        b_counter = AccessCounter(raw_data)
        b_array = biggus.NumpyArrayAdapter(b_counter)

        sub_array = biggus.sub(a_array, b_array)
        mean_array = biggus.mean(sub_array, axis=0)
        std_array = biggus.std(sub_array, axis=0)
        mean, std = biggus.ndarrays([mean_array, std_array])

        # Are the resulting numbers equivalent?
        np.testing.assert_array_almost_equal(mean,
                                             np.mean(raw_data * 2, axis=0))
        np.testing.assert_array_almost_equal(std,
                                             np.std(raw_data * 2, axis=0))
        # Was the source data read just once?
        self.assert_counts(a_counter.counts, [1])
        self.assert_counts(b_counter.counts, [1])
Exemple #10
0
 def _compare(self, data, axis=0, ddof=0):
     array = biggus.ArrayAdapter(data)
     biggus_std = biggus.std(array, axis=axis, ddof=ddof)
     np_std = np.std(data, axis=axis, ddof=ddof)
     np.testing.assert_array_almost_equal(np_std,
                                          biggus_std.ndarray())