def compute_output(api, args): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ cluster = None clusters = None # no multi-label support at present # variables from command-line options resume = args.resume_ cluster_ids = args.cluster_ids_ output = args.predictions # there's only one cluster to be generated at present args.max_parallel_clusters = 1 # clusters cannot be published yet. args.public_cluster = False # It is compulsory to have a description to publish either datasets or # clusters if (not args.description_ and (args.public_cluster or args.public_dataset)): sys.exit("You should provide a description to publish.") # When using --new-fields, it is compulsory to specify also a dataset # id if args.new_fields and not args.dataset: sys.exit("To use --new-fields you must also provide a dataset id" " to generate the new dataset from it.") path = u.check_dir(output) session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required set the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared clear_log_files([log]) # basic pre-model step: creating or retrieving the source related info source, resume, csv_properties, fields = pms.get_source_info( api, args, resume, csv_properties, session_file, path, log) # basic pre-model step: creating or retrieving the dataset related info dataset_properties = pms.get_dataset_info(api, args, resume, source, csv_properties, fields, session_file, path, log) (_, datasets, test_dataset, resume, csv_properties, fields) = dataset_properties if args.cluster_file: # cluster is retrieved from the contents of the given local JSON file cluster, csv_properties, fields = u.read_local_resource( args.cluster_file, csv_properties=csv_properties) clusters = [cluster] cluster_ids = [cluster['resource']] else: # cluster is retrieved from the remote object clusters, cluster_ids, resume = pc.clusters_processing( datasets, clusters, cluster_ids, api, args, resume, fields=fields, session_file=session_file, path=path, log=log) if clusters: cluster = clusters[0] # We update the cluster's public state if needed if cluster: if isinstance(cluster, basestring): if args.cluster_datasets is None and not a.has_test(args): query_string = MINIMUM_MODEL else: query_string = '' cluster = u.check_resource(cluster, api.get_cluster, query_string=query_string) clusters[0] = cluster if (args.public_cluster or (args.shared_flag and r.shared_changed(args.shared, cluster))): cluster_args = {} if args.shared_flag and r.shared_changed(args.shared, cluster): cluster_args.update(shared=args.shared) if args.public_cluster: cluster_args.update(r.set_publish_cluster_args(args)) if cluster_args: cluster = r.update_cluster(cluster, cluster_args, args, api=api, path=path, session_file=session_file) clusters[0] = cluster # We get the fields of the cluster if we haven't got # them yet and need them if cluster and (args.test_set or args.export_fields): if isinstance(cluster, dict): cluster = cluster['resource'] cluster = u.check_resource(cluster, api.get_cluster, query_string=r.ALL_FIELDS_QS) fields = pc.get_cluster_fields(cluster, csv_properties, args) # If predicting if clusters and (a.has_test(args) or (test_dataset and args.remote)): if test_dataset is None: test_dataset = get_test_dataset(args) # Remote centroids: centroids are computed as batch centroids # in bigml.com except when --no-batch flag is set on if args.remote and not args.no_batch: # create test source from file test_name = "%s - test" % args.name if args.test_source is None: test_properties = ps.test_source_processing( api, args, resume, name=test_name, session_file=session_file, path=path, log=log) (test_source, resume, csv_properties, test_fields) = test_properties else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id) if test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args(args, name=test_name) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log) else: test_dataset_id = bigml.api.get_dataset_id(test_dataset) test_dataset = api.check_resource(test_dataset_id) test_fields = pd.get_fields_structure(test_dataset, csv_properties) batch_centroid_args = r.set_batch_centroid_args( args, fields=fields, dataset_fields=test_fields) remote_centroid(cluster, test_dataset, batch_centroid_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log) else: centroid(clusters, fields, args, session_file=session_file) if cluster and args.cluster_datasets is not None: cluster = api.check_resource(cluster) centroids_info = cluster['object']['clusters']['clusters'] centroids = { centroid['name']: centroid['id'] for centroid in centroids_info } cluster_datasets = cluster['object']['cluster_datasets'] if args.cluster_datasets == '': centroid_ids = centroids.values() else: centroid_ids = [ centroids[cluster_name] for cluster_name in args.cluster_datasets_ if cluster_datasets.get(centroids[cluster_name], '') == '' ] for centroid_id in centroid_ids: dataset_args = {'centroid': centroid_id} r.create_dataset(cluster, dataset_args, args, api=api, path=path, session_file=session_file, log=log, dataset_type='cluster') if cluster and args.cluster_models is not None: cluster = api.check_resource(cluster) centroids_info = cluster['object']['clusters']['clusters'] centroids = { centroid['name']: centroid['id'] for centroid in centroids_info } models = cluster['object']['cluster_models'] if args.cluster_models == '': centroid_ids = centroids.values() else: centroid_ids = [ centroids[cluster_name] for cluster_name in args.cluster_models_ if models.get(centroids[cluster_name], '') == '' ] for centroid_id in centroid_ids: model_args = {'centroid': centroid_id} r.create_model(cluster, model_args, args, api=api, path=path, session_file=session_file, log=log, model_type='cluster') if fields and args.export_fields: fields.summary_csv(os.path.join(path, args.export_fields)) u.print_generated_files(path, log_file=session_file, verbosity=args.verbosity) if args.reports: clear_reports(path) if args.upload: upload_reports(args.reports, path)
def compute_output(api, args): """ Creates one or more models using the `training_set` or uses the ids of previously created BigML models to make predictions for the `test_set`. """ cluster = None clusters = None # no multi-label support at present # variables from command-line options resume = args.resume_ cluster_ids = args.cluster_ids_ output = args.predictions # there's only one cluster to be generated at present args.max_parallel_clusters = 1 # clusters cannot be published yet. args.public_cluster = False # It is compulsory to have a description to publish either datasets or # clusters if (not args.description_ and (args.public_cluster or args.public_dataset)): sys.exit("You should provide a description to publish.") # When using --new-fields, it is compulsory to specify also a dataset # id if args.new_fields and not args.dataset: sys.exit("To use --new-fields you must also provide a dataset id" " to generate the new dataset from it.") path = u.check_dir(output) session_file = u"%s%s%s" % (path, os.sep, SESSIONS_LOG) csv_properties = {} # If logging is required set the file for logging log = None if args.log_file: u.check_dir(args.log_file) log = args.log_file # If --clear_logs the log files are cleared clear_log_files([log]) # basic pre-model step: creating or retrieving the source related info source, resume, csv_properties, fields = pms.get_source_info( api, args, resume, csv_properties, session_file, path, log) # basic pre-model step: creating or retrieving the dataset related info dataset_properties = pms.get_dataset_info( api, args, resume, source, csv_properties, fields, session_file, path, log) (_, datasets, test_dataset, resume, csv_properties, fields) = dataset_properties if args.cluster_file: # cluster is retrieved from the contents of the given local JSON file cluster, csv_properties, fields = u.read_local_resource( args.cluster_file, csv_properties=csv_properties) clusters = [cluster] cluster_ids = [cluster['resource']] else: # cluster is retrieved from the remote object clusters, cluster_ids, resume = pc.clusters_processing( datasets, clusters, cluster_ids, api, args, resume, fields=fields, session_file=session_file, path=path, log=log) if clusters: cluster = clusters[0] # We update the cluster's public state if needed if cluster: if isinstance(cluster, basestring): if args.cluster_datasets is None and not a.has_test(args): query_string = MINIMUM_MODEL else: query_string = '' cluster = u.check_resource(cluster, api.get_cluster, query_string=query_string) clusters[0] = cluster if (args.public_cluster or (args.shared_flag and r.shared_changed(args.shared, cluster))): cluster_args = {} if args.shared_flag and r.shared_changed(args.shared, cluster): cluster_args.update(shared=args.shared) if args.public_cluster: cluster_args.update(r.set_publish_cluster_args(args)) if cluster_args: cluster = r.update_cluster(cluster, cluster_args, args, api=api, path=path, session_file=session_file) clusters[0] = cluster # We get the fields of the cluster if we haven't got # them yet and need them if cluster and args.test_set: fields = pc.get_cluster_fields(cluster, csv_properties, args) # If predicting if clusters and (a.has_test(args) or (test_dataset and args.remote)): if test_dataset is None: test_dataset = get_test_dataset(args) # Remote centroids: centroids are computed as batch centroids # in bigml.com except when --no-batch flag is set on if args.remote and not args.no_batch: # create test source from file test_name = "%s - test" % args.name if args.test_source is None: test_properties = ps.test_source_processing( api, args, resume, name=test_name, session_file=session_file, path=path, log=log) (test_source, resume, csv_properties, test_fields) = test_properties else: test_source_id = bigml.api.get_source_id(args.test_source) test_source = api.check_resource(test_source_id) if test_dataset is None: # create test dataset from test source dataset_args = r.set_basic_dataset_args(args, name=test_name) test_dataset, resume = pd.alternative_dataset_processing( test_source, "test", dataset_args, api, args, resume, session_file=session_file, path=path, log=log) else: test_dataset_id = bigml.api.get_dataset_id(test_dataset) test_dataset = api.check_resource(test_dataset_id) test_fields = pd.get_fields_structure(test_dataset, csv_properties) batch_centroid_args = r.set_batch_centroid_args( args, fields=fields, dataset_fields=test_fields) remote_centroid(cluster, test_dataset, batch_centroid_args, args, api, resume, prediction_file=output, session_file=session_file, path=path, log=log) else: centroid(clusters, fields, args, session_file=session_file) if cluster and args.cluster_datasets is not None: centroids_info = cluster['object']['clusters']['clusters'] centroids = {centroid['name']: centroid['id'] for centroid in centroids_info} datasets = cluster['object']['cluster_datasets'] if args.cluster_datasets == '': centroid_ids = centroids.values() else: centroid_ids = [centroids[cluster_name] for cluster_name in args.cluster_datasets_ if datasets[centroids[cluster_name]] == ''] for centroid_id in centroid_ids: dataset_args = {'centroid': centroid_id} r.create_dataset(cluster, dataset_args, args, api=api, path=path, session_file=session_file, log=log, dataset_type='cluster') u.print_generated_files(path, log_file=session_file, verbosity=args.verbosity) if args.reports: clear_reports(path) if args.upload: upload_reports(args.reports, path)