def create_parser(general_defaults={}, constants={}, subcommand=MAIN): """Sets the accepted command options, variables, defaults and help """ defaults = general_defaults['BigMLer'] version = pkg_resources.require("BigMLer")[0].version version_text = """\ BigMLer %s - A Higher Level API to BigML's API Copyright 2012-2015 BigML Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" % version constants['version_text'] = version_text main_parser = argparse.ArgumentParser( description="A higher level API to BigML's API.", epilog="Happy predictive modeling!", formatter_class=argparse.RawTextHelpFormatter) main_parser.add_argument('--version', action='version', version=version_text) subparsers = main_parser.add_subparsers() # list of options common_options = get_common_options(defaults=defaults, constants=constants) delete_options = get_delete_options(defaults=defaults) source_options = get_source_options(defaults=defaults) dataset_options = get_dataset_options(defaults=defaults) test_options = get_test_options(defaults=defaults) multi_label_options = get_multi_label_options(defaults=defaults) # subcommand options subcommand_options = {} # specific options subcommand_options["main"] = get_main_options(defaults=defaults, constants=constants) # general options subcommand_options["main"].update(common_options) subcommand_options["main"].update(source_options) subcommand_options["main"].update(dataset_options) subcommand_options["main"].update(multi_label_options) subcommand_options["main"].update(test_options) subcommand_options["main"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag'] }) main_options = subcommand_options["main"] defaults = general_defaults["BigMLer analyze"] subcommand_options["analyze"] = get_analyze_options(defaults=defaults) subcommand_options["analyze"].update(common_options) # we add the options that should be transmitted to bigmler main subcommands # in analyze subcommand_options["analyze"].update({ '--objective': main_options['--objective'], '--max-parallel-models': main_options['--max-parallel-models'], '--max-parallel-evaluations': main_options['--max-parallel-evaluations'], '--model-fields': main_options['--model-fields'], '--balance': main_options['--balance'], '--no-balance': main_options['--no-balance'], '--number-of-models': main_options['--number-of-models'], '--sample-rate': main_options['--sample-rate'], '--missing-splits': main_options['--missing-splits'], '--pruning': main_options['--pruning'], '--weight-field': main_options['--weight-field'], '--replacement': main_options['--replacement'], '--objective-weights': main_options['--objective-weights'], '--model-attributes': main_options['--model-attributes'], '--ensemble-attributes': main_options['--ensemble-attributes'], '--tlp': main_options['--tlp'], '--randomize': main_options['--randomize'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset'] }) defaults = general_defaults["BigMLer cluster"] subcommand_options["cluster"] = get_cluster_options(defaults=defaults) # general options subcommand_options["cluster"].update(common_options) subcommand_options["cluster"].update(source_options) subcommand_options["cluster"].update(dataset_options) subcommand_options["cluster"].update(test_options) subcommand_options["cluster"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--centroid-tag': delete_options['--centroid-tag'], '--batch-centroid-tag': delete_options['--batch-centroid-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset'] }) defaults = general_defaults["BigMLer anomaly"] subcommand_options["anomaly"] = get_anomaly_options(defaults=defaults) # general options subcommand_options["anomaly"].update(common_options) subcommand_options["anomaly"].update(source_options) subcommand_options["anomaly"].update(dataset_options) subcommand_options["anomaly"].update(test_options) subcommand_options["anomaly"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--anomaly-score-tag': delete_options['--anomaly-score-tag'], '--batch-anomaly-score-tag': delete_options['--batch-anomaly-score-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset'] }) defaults = general_defaults["BigMLer sample"] subcommand_options["sample"] = get_sample_options(defaults=defaults) # general options subcommand_options["sample"].update(common_options) subcommand_options["sample"].update(source_options) subcommand_options["sample"].update(dataset_options) subcommand_options["sample"].update({ '--cpp': main_options['--cpp'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--sample-tag': delete_options['--sample-tag'], '--reports': main_options['--reports'] }) subcommand_options["delete"] = delete_options subcommand_options["delete"].update(common_options) defaults = general_defaults["BigMLer report"] subcommand_options["report"] = get_report_options(defaults=defaults) for subcommand in SUBCOMMANDS: subparser = subparsers.add_parser(subcommand) parser_add_options(subparser, subcommand_options[subcommand]) # options to be transmitted from analyze to main chained_options = [ "--debug", "--dev", "--username", "--api-key", "--resources-log", "--store", "--clear-logs", "--max-parallel-models", "--max-parallel-evaluations", "--objective", "--tag", "--no-tag", "--no-debug", "--no-dev", "--model-fields", "--balance", "--verbosity", "--resume", "--stack_level", "--no-balance", "--args-separator", "--name" ] return main_parser, chained_options
def create_parser(general_defaults={}, constants={}, subcommand=MAIN): """Sets the accepted command options, variables, defaults and help """ defaults = general_defaults['BigMLer'] version = pkg_resources.require("BigMLer")[0].version version_text = """\ BigMLer %s - A Higher Level API to BigML's API Copyright 2012-2019 BigML Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" % version constants['version_text'] = version_text main_parser = argparse.ArgumentParser( description="A higher level API to BigML's API.", epilog="Happy predictive modeling!", formatter_class=argparse.RawTextHelpFormatter) main_parser.add_argument('--version', action='version', version=version_text) subparsers = main_parser.add_subparsers() # list of options common_options = get_common_options(defaults=defaults, constants=constants) delete_options = get_delete_options(defaults=defaults) source_options = get_source_options(defaults=defaults) dataset_options = get_dataset_options(defaults=defaults) test_options = get_test_options(defaults=defaults) multi_label_options = get_multi_label_options(defaults=defaults) # subcommand options subcommand_options = {} # specific options subcommand_options["main"] = get_main_options(defaults=defaults, constants=constants) # general options subcommand_options["main"].update(common_options) subcommand_options["main"].update(source_options) subcommand_options["main"].update(dataset_options) subcommand_options["main"].update(multi_label_options) subcommand_options["main"].update(test_options) subcommand_options["main"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag']}) main_options = subcommand_options["main"] subcommand_options["dataset"] = dataset_options subcommand_options["dataset"].update(get_dataset_trans_options( \ defaults=defaults)) subcommand_options["dataset"].update(common_options) subcommand_options["dataset"].update(source_options) subcommand_options["main"].update(multi_label_options) subcommand_options["dataset"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--max-categories': subcommand_options['main']['--max-categories'], '--labels': subcommand_options['main']['--labels'], '--multi-label': subcommand_options['main']['--multi-label'], '--objective': subcommand_options['main']['--objective'], '--reports': subcommand_options['main']['--reports']}) dataset_sampling_options = { \ '--replacement': main_options['--replacement'], '--sample-rate': main_options['--sample-rate'], '--seed': main_options['--seed']} defaults = general_defaults["BigMLer whizzml"] subcommand_options["whizzml"] = get_whizzml_options(defaults=defaults) subcommand_options["whizzml"].update(common_options) defaults = general_defaults["BigMLer analyze"] subcommand_options["analyze"] = get_analyze_options(defaults=defaults) subcommand_options["analyze"].update(common_options) # we add the options that should be transmitted to bigmler main subcommands # in analyze subcommand_options["analyze"].update({ '--dataset': dataset_options['--dataset'], '--objective': main_options['--objective'], '--max-parallel-models': main_options['--max-parallel-models'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--model-fields': main_options['--model-fields'], '--balance': main_options['--balance'], '--no-balance': main_options['--no-balance'], '--number-of-models': main_options['--number-of-models'], '--missing-splits': main_options['--missing-splits'], '--pruning': main_options['--pruning'], '--weight-field': main_options['--weight-field'], '--ensemble-sample-no-replacement': main_options[ \ '--ensemble-sample-no-replacement'], '--ensemble-sample-rate': main_options['--ensemble-sample-rate'], '--ensemble-sample-seed': main_options['--ensemble-sample-seed'], '--objective-weights': main_options['--objective-weights'], '--model-attributes': main_options['--model-attributes'], '--ensemble-attributes': main_options['--ensemble-attributes'], '--boosting': main_options['--boosting'], '--boosting-iterations': main_options['--boosting-iterations'], '--early-holdout': main_options['--early-holdout'], '--no-early-out-of-bag': main_options['--no-early-out-of-bag'], '--learning-rate': main_options['--learning-rate'], '--no-step-out-of-bag': main_options['--no-step-out-of-bag'], '--randomize': main_options['--randomize'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset'], '--datasets': main_options['--datasets'], '--dataset-file': main_options['--dataset-file'], '--dataset-tag': delete_options['--dataset-tag']}) subcommand_options["analyze"].update(dataset_sampling_options) defaults = general_defaults["BigMLer cluster"] subcommand_options["cluster"] = get_cluster_options(defaults=defaults) # general options subcommand_options["cluster"].update(common_options) subcommand_options["cluster"].update(source_options) subcommand_options["cluster"].update(dataset_options) subcommand_options["cluster"].update(test_options) subcommand_options["cluster"].update(dataset_sampling_options) subcommand_options["cluster"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--centroid-tag': delete_options['--centroid-tag'], '--batch-centroid-tag': delete_options['--batch-centroid-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer anomaly"] subcommand_options["anomaly"] = get_anomaly_options(defaults=defaults) # general options subcommand_options["anomaly"].update(common_options) subcommand_options["anomaly"].update(source_options) subcommand_options["anomaly"].update(dataset_options) subcommand_options["anomaly"].update(test_options) subcommand_options["anomaly"].update(dataset_sampling_options) subcommand_options["anomaly"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--anomaly-score-tag': delete_options['--anomaly-score-tag'], '--batch-anomaly-score-tag': delete_options[ '--batch-anomaly-score-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer sample"] subcommand_options["sample"] = get_sample_options(defaults=defaults) # general options subcommand_options["sample"].update(common_options) subcommand_options["sample"].update(source_options) subcommand_options["sample"].update(dataset_options) subcommand_options["sample"].update({ '--cpp': main_options['--cpp'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--sample-tag': delete_options['--sample-tag'], '--reports': main_options['--reports']}) subcommand_options["delete"] = delete_options subcommand_options["delete"].update(common_options) defaults = general_defaults["BigMLer report"] subcommand_options["report"] = get_report_options(defaults=defaults) defaults = general_defaults["BigMLer export"] subcommand_options["export"] = get_export_options(defaults=defaults) export_common_options_list = ['clear-logs', 'username', 'api-key', 'version', 'org-project', 'output-dir', 'verbosity', 'resume', 'stack-level', 'debug', 'store'] export_common_options = {} for option in export_common_options_list: option = '--%s' % option export_common_options.update({option: common_options[option]}) subcommand_options["export"].update(export_common_options) defaults = general_defaults["BigMLer reify"] subcommand_options["reify"] = get_reify_options(defaults=defaults) reify_common_options_list = ['clear-logs', 'username', 'api-key', 'version', 'org-project', 'output-dir', 'verbosity', 'resume', 'stack-level', 'debug', 'store'] reify_common_options = {} for option in reify_common_options_list: option = '--%s' % option reify_common_options.update({option: common_options[option]}) subcommand_options["reify"].update(reify_common_options) subcommand_options["project"] = get_project_options(defaults=defaults) subcommand_options["project"].update({ '--project': source_options['--project'], '--project-id': source_options['--project-id'], '--name': common_options['--name'], '--description': common_options['--description'], '--category': common_options['--category'], '--tag': common_options['--tag'], '--resources-file': main_options['--resources-log']}) project_common_options = {} for option in reify_common_options_list: option = '--%s' % option project_common_options.update({option: common_options[option]}) subcommand_options["project"].update(project_common_options) defaults = general_defaults["BigMLer association"] subcommand_options["association"] = get_association_options( \ defaults=defaults) # general options subcommand_options["association"].update(common_options) subcommand_options["association"].update(source_options) subcommand_options["association"].update(dataset_options) subcommand_options["association"].update(test_options) subcommand_options["association"].update(dataset_sampling_options) subcommand_options["association"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--association-tag': delete_options['--association-tag'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv']}) defaults = general_defaults["BigMLer logistic regression"] subcommand_options["logistic-regression"] = \ get_logistic_regression_options( \ defaults=defaults) # general options subcommand_options["logistic-regression"].update(common_options) subcommand_options["logistic-regression"].update(source_options) subcommand_options["logistic-regression"].update(dataset_options) subcommand_options["logistic-regression"].update(test_options) subcommand_options["logistic-regression"].update(dataset_sampling_options) subcommand_options["logistic-regression"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--logistic-regression-tag': delete_options[ '--logistic-regression-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--dataset-off': main_options['--dataset-off'], '--operating-point': main_options['--operating-point'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--cross-validation-rate': main_options[ '--cross-validation-rate'], '--number-of-evaluations': main_options[ '--number-of-evaluations'], '--batch-prediction-attributes': main_options[ '--batch-prediction-attributes'], '--prediction-attributes': main_options[ '--prediction-attributes'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag'], '--no-no-csv': main_options['--no-no-csv']}) defaults = general_defaults["BigMLer linear regression"] subcommand_options["linear-regression"] = \ get_linear_regression_options( \ defaults=defaults) # general options subcommand_options["linear-regression"].update(common_options) subcommand_options["linear-regression"].update(source_options) subcommand_options["linear-regression"].update(dataset_options) subcommand_options["linear-regression"].update(test_options) subcommand_options["linear-regression"].update(dataset_sampling_options) subcommand_options["linear-regression"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--linear-regression-tag': delete_options[ '--linear-regression-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--dataset-off': main_options['--dataset-off'], '--field-codings': subcommand_options['logistic-regression'][ \ '--field-codings'], '--bias': subcommand_options['logistic-regression'][ \ '--bias'], '--no-bias': subcommand_options['logistic-regression'][ \ '--no-bias'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--cross-validation-rate': main_options[ '--cross-validation-rate'], '--number-of-evaluations': main_options[ '--number-of-evaluations'], '--batch-prediction-attributes': main_options[ '--batch-prediction-attributes'], '--prediction-attributes': main_options[ '--prediction-attributes'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag'], '--no-no-csv': main_options['--no-no-csv']}) # time-series defaults = general_defaults["BigMLer time-series"] subcommand_options["time-series"] = get_time_series_options( \ defaults=defaults) subcommand_options["time-series"].update(common_options) subcommand_options["time-series"].update(source_options) subcommand_options["time-series"].update(dataset_options) subcommand_options["time-series"].update(test_options) subcommand_options["time-series"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--fields-map': main_options['--fields-map'], '--time-series-tag': delete_options[ '--time-series-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-header': main_options['--prediction-header'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote']}) defaults = general_defaults["BigMLer execute"] subcommand_options["execute"] = get_execute_options(defaults=defaults) execute_common_options = {} for option in common_options: execute_common_options.update({option: common_options[option]}) subcommand_options["execute"].update(execute_common_options) subcommand_options["execute"].update( {'--project': source_options['--project'], '--upgrade': subcommand_options['whizzml']['--upgrade'], '--project-id': source_options['--project-id'], '--script-tag': delete_options['--script-tag'], '--library-tag': delete_options['--library-tag'], '--execution-tag': delete_options['--execution-tag']}) defaults = {} subcommand_options["retrain"] = get_retrain_options(defaults=defaults) # shared options are like the ones in reify subcommand_options["retrain"].update(reify_common_options) subcommand_options["retrain"].update( \ {'--output': subcommand_options['reify']['--output'], '--org-project': common_options['--org-project'], '--upgrade': subcommand_options['reify']['--upgrade'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--logistic-regression-tag': delete_options['--logistic-regression-tag'], '--deepnet-tag': delete_options['--deepnet-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--association-tag': delete_options['--association-tag'], '--time-series-tag': delete_options['--time-series-tag'], '--topic-model-tag': delete_options['--topic-model-tag']}) defaults = general_defaults["BigMLer topic model"] subcommand_options["topic-model"] = get_topic_model_options( defaults=defaults) # general options subcommand_options["topic-model"].update(common_options) subcommand_options["topic-model"].update(source_options) subcommand_options["topic-model"].update(dataset_options) subcommand_options["topic-model"].update(test_options) subcommand_options["topic-model"].update(dataset_sampling_options) subcommand_options["topic-model"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--topic-model-tag': delete_options['--topic-model-tag'], '--topic-distribution-tag': delete_options['--topic-distribution-tag'], '--batch-topic-distribution-tag': delete_options[ \ '--batch-topic-distribution-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer deepnet"] subcommand_options["deepnet"] = \ get_deepnet_options(defaults=defaults) # general options subcommand_options["deepnet"].update(common_options) subcommand_options["deepnet"].update(source_options) subcommand_options["deepnet"].update(dataset_options) subcommand_options["deepnet"].update(test_options) subcommand_options["deepnet"].update(dataset_sampling_options) subcommand_options["deepnet"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--deepnet-tag': delete_options[ '--deepnet-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--default-numeric-value': main_options['--default-numeric-value'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--operating-point': main_options['--operating-point'], '--dataset-off': main_options['--dataset-off'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--cross-validation-rate': main_options[ '--cross-validation-rate'], '--number-of-evaluations': main_options[ '--number-of-evaluations'], '--batch-prediction-attributes': main_options[ '--batch-prediction-attributes'], '--prediction-attributes': main_options[ '--prediction-attributes'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag'], '--no-no-csv': main_options['--no-no-csv']}) defaults = general_defaults["BigMLer PCA"] subcommand_options["pca"] = \ get_pca_options( \ defaults=defaults) # general options subcommand_options["pca"].update(common_options) subcommand_options["pca"].update(source_options) subcommand_options["pca"].update(dataset_options) subcommand_options["pca"].update(test_options) subcommand_options["pca"].update(dataset_sampling_options) subcommand_options["pca"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--pca-tag': delete_options[ '--pca-tag'], '--projection-tag': delete_options[ '--projection-tag'], '--batch-projection-tag': delete_options[ '--batch-projection-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--dataset-off': main_options['--dataset-off'], '--no-no-csv': main_options['--no-no-csv']}) subparser = subparsers.add_parser(subcommand) defaults = general_defaults["BigMLer Fusion"] subcommand_options["fusion"] = get_fusion_options(defaults=defaults) # general options subcommand_options["fusion"].update(common_options) subcommand_options["fusion"].update(test_options) subcommand_options["fusion"].update(source_options) subcommand_options["fusion"].update(dataset_options) del(subcommand_options["fusion"]["--train"]) del(subcommand_options["fusion"]["--source"]) del(subcommand_options["fusion"]["--source-file"]) del(subcommand_options["fusion"]["--dataset"]) del(subcommand_options["fusion"]["--datasets"]) del(subcommand_options["fusion"]["--dataset-file"]) subcommand_options["fusion"].update({ '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--operating-point': main_options['--operating-point'], '--reports': main_options['--reports'], '--project-id': source_options['--project-id'], '--project': source_options['--project'], '--remote': main_options['--remote'], '--batch-prediction-attributes': main_options[ '--batch-prediction-attributes'], '--prediction-attributes': main_options[ '--prediction-attributes'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag'], '--no-batch': main_options['--no-batch'], '--evaluate': main_options['--evaluate'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--dataset-off': main_options['--dataset-off'], '--no-no-csv': main_options['--no-no-csv'], '--locale': main_options['--locale'], '--training-separator': main_options['--training-separator'], '--fusion-tag': delete_options['--fusion-tag']}) subparser = subparsers.add_parser(subcommand) parser_add_options(subparser, subcommand_options[subcommand]) # options to be transmitted from analyze to main chained_options = [ "--debug", "--username", "--api-key", "--resources-log", "--store", "--clear-logs", "--max-parallel-models", "--max-parallel-evaluations", "--objective", "--tag", "--no-tag", "--no-debug", "--model-fields", "--balance", "--verbosity", "--resume", "--stack_level", "--no-balance", "--args-separator", "--name"] return main_parser, chained_options, subcommand_options
def create_parser(general_defaults={}, constants={}, subcommand=MAIN): """Sets the accepted command options, variables, defaults and help """ defaults = general_defaults['BigMLer'] version = pkg_resources.require("BigMLer")[0].version version_text = """\ BigMLer %s - A Higher Level API to BigML's API Copyright 2012-2018 BigML Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" % version constants['version_text'] = version_text main_parser = argparse.ArgumentParser( description="A higher level API to BigML's API.", epilog="Happy predictive modeling!", formatter_class=argparse.RawTextHelpFormatter) main_parser.add_argument('--version', action='version', version=version_text) subparsers = main_parser.add_subparsers() # list of options common_options = get_common_options(defaults=defaults, constants=constants) delete_options = get_delete_options(defaults=defaults) source_options = get_source_options(defaults=defaults) dataset_options = get_dataset_options(defaults=defaults) test_options = get_test_options(defaults=defaults) multi_label_options = get_multi_label_options(defaults=defaults) # subcommand options subcommand_options = {} # specific options subcommand_options["main"] = get_main_options(defaults=defaults, constants=constants) # general options subcommand_options["main"].update(common_options) subcommand_options["main"].update(source_options) subcommand_options["main"].update(dataset_options) subcommand_options["main"].update(multi_label_options) subcommand_options["main"].update(test_options) subcommand_options["main"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag']}) main_options = subcommand_options["main"] dataset_sampling_options = { \ '--replacement': main_options['--replacement'], '--sample-rate': main_options['--sample-rate'], '--seed': main_options['--seed']} defaults = general_defaults["BigMLer whizzml"] subcommand_options["whizzml"] = get_whizzml_options(defaults=defaults) subcommand_options["whizzml"].update(common_options) defaults = general_defaults["BigMLer analyze"] subcommand_options["analyze"] = get_analyze_options(defaults=defaults) subcommand_options["analyze"].update(common_options) # we add the options that should be transmitted to bigmler main subcommands # in analyze subcommand_options["analyze"].update({ '--dataset': dataset_options['--dataset'], '--objective': main_options['--objective'], '--max-parallel-models': main_options['--max-parallel-models'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--model-fields': main_options['--model-fields'], '--balance': main_options['--balance'], '--no-balance': main_options['--no-balance'], '--number-of-models': main_options['--number-of-models'], '--missing-splits': main_options['--missing-splits'], '--pruning': main_options['--pruning'], '--weight-field': main_options['--weight-field'], '--ensemble-sample-no-replacement': main_options[ \ '--ensemble-sample-no-replacement'], '--ensemble-sample-rate': main_options['--ensemble-sample-rate'], '--ensemble-sample-seed': main_options['--ensemble-sample-seed'], '--objective-weights': main_options['--objective-weights'], '--model-attributes': main_options['--model-attributes'], '--ensemble-attributes': main_options['--ensemble-attributes'], '--boosting': main_options['--boosting'], '--boosting-iterations': main_options['--boosting-iterations'], '--early-holdout': main_options['--early-holdout'], '--no-early-out-of-bag': main_options['--no-early-out-of-bag'], '--learning-rate': main_options['--learning-rate'], '--no-step-out-of-bag': main_options['--no-step-out-of-bag'], '--randomize': main_options['--randomize'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset'], '--datasets': main_options['--datasets'], '--dataset-file': main_options['--dataset-file'], '--dataset-tag': delete_options['--dataset-tag']}) subcommand_options["analyze"].update(dataset_sampling_options) defaults = general_defaults["BigMLer cluster"] subcommand_options["cluster"] = get_cluster_options(defaults=defaults) # general options subcommand_options["cluster"].update(common_options) subcommand_options["cluster"].update(source_options) subcommand_options["cluster"].update(dataset_options) subcommand_options["cluster"].update(test_options) subcommand_options["cluster"].update(dataset_sampling_options) subcommand_options["cluster"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--centroid-tag': delete_options['--centroid-tag'], '--batch-centroid-tag': delete_options['--batch-centroid-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer anomaly"] subcommand_options["anomaly"] = get_anomaly_options(defaults=defaults) # general options subcommand_options["anomaly"].update(common_options) subcommand_options["anomaly"].update(source_options) subcommand_options["anomaly"].update(dataset_options) subcommand_options["anomaly"].update(test_options) subcommand_options["anomaly"].update(dataset_sampling_options) subcommand_options["anomaly"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--anomaly-score-tag': delete_options['--anomaly-score-tag'], '--batch-anomaly-score-tag': delete_options[ '--batch-anomaly-score-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer sample"] subcommand_options["sample"] = get_sample_options(defaults=defaults) # general options subcommand_options["sample"].update(common_options) subcommand_options["sample"].update(source_options) subcommand_options["sample"].update(dataset_options) subcommand_options["sample"].update({ '--cpp': main_options['--cpp'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--sample-tag': delete_options['--sample-tag'], '--reports': main_options['--reports']}) subcommand_options["delete"] = delete_options subcommand_options["delete"].update(common_options) defaults = general_defaults["BigMLer report"] subcommand_options["report"] = get_report_options(defaults=defaults) defaults = general_defaults["BigMLer export"] subcommand_options["export"] = get_export_options(defaults=defaults) export_common_options_list = ['clear-logs', 'username', 'api-key', 'version', 'dev', 'no-dev', 'output-dir', 'verbosity', 'resume', 'stack-level', 'debug', 'store'] export_common_options = {} for option in export_common_options_list: option = '--%s' % option export_common_options.update({option: common_options[option]}) subcommand_options["export"].update(export_common_options) defaults = general_defaults["BigMLer reify"] subcommand_options["reify"] = get_reify_options(defaults=defaults) reify_common_options_list = ['clear-logs', 'username', 'api-key', 'version', 'dev', 'no-dev', 'output-dir', 'verbosity', 'resume', 'stack-level', 'debug', 'store'] reify_common_options = {} for option in reify_common_options_list: option = '--%s' % option reify_common_options.update({option: common_options[option]}) subcommand_options["reify"].update(reify_common_options) subcommand_options["project"] = get_project_options(defaults=defaults) subcommand_options["project"].update({ '--project': source_options['--project'], '--project-id': source_options['--project-id'], '--name': common_options['--name'], '--description': common_options['--description'], '--category': common_options['--category'], '--tag': common_options['--tag'], '--resources-file': main_options['--resources-log']}) project_common_options = {} for option in reify_common_options_list: option = '--%s' % option project_common_options.update({option: common_options[option]}) subcommand_options["project"].update(project_common_options) defaults = general_defaults["BigMLer association"] subcommand_options["association"] = get_association_options( \ defaults=defaults) # general options subcommand_options["association"].update(common_options) subcommand_options["association"].update(source_options) subcommand_options["association"].update(dataset_options) subcommand_options["association"].update(test_options) subcommand_options["association"].update(dataset_sampling_options) subcommand_options["association"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--association-tag': delete_options['--association-tag'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv']}) defaults = general_defaults["BigMLer logistic regression"] subcommand_options["logistic-regression"] = \ get_logistic_regression_options( \ defaults=defaults) # general options subcommand_options["logistic-regression"].update(common_options) subcommand_options["logistic-regression"].update(source_options) subcommand_options["logistic-regression"].update(dataset_options) subcommand_options["logistic-regression"].update(test_options) subcommand_options["logistic-regression"].update(dataset_sampling_options) subcommand_options["logistic-regression"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--logistic-regression-tag': delete_options[ '--logistic-regression-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--dataset-off': main_options['--dataset-off'], '--operating-point': main_options['--operating-point'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--cross-validation-rate': main_options[ '--cross-validation-rate'], '--number-of-evaluations': main_options[ '--number-of-evaluations'], '--no-no-csv': main_options['--no-no-csv']}) # time-series defaults = general_defaults["BigMLer time-series"] subcommand_options["time-series"] = get_time_series_options( \ defaults=defaults) subcommand_options["time-series"].update(common_options) subcommand_options["time-series"].update(source_options) subcommand_options["time-series"].update(dataset_options) subcommand_options["time-series"].update(test_options) subcommand_options["time-series"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--fields-map': main_options['--fields-map'], '--time-series-tag': delete_options[ '--time-series-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-header': main_options['--prediction-header'], '--reports': main_options['--reports'], '--remote': main_options['--remote']}) defaults = general_defaults["BigMLer execute"] subcommand_options["execute"] = get_execute_options(defaults=defaults) execute_common_options = {} for option in common_options: execute_common_options.update({option: common_options[option]}) subcommand_options["execute"].update(execute_common_options) subcommand_options["execute"].update( {'--project': source_options['--project'], '--upgrade': subcommand_options['whizzml']['--upgrade'], '--project-id': source_options['--project-id'], '--script-tag': delete_options['--script-tag'], '--library-tag': delete_options['--library-tag'], '--execution-tag': delete_options['--execution-tag']}) defaults = {} subcommand_options["retrain"] = get_retrain_options(defaults=defaults) # shared options are like the ones in reify subcommand_options["retrain"].update(reify_common_options) subcommand_options["retrain"].update( \ {'--output': subcommand_options['reify']['--output'], '--org-project': common_options['--org-project'], '--upgrade': subcommand_options['reify']['--upgrade'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--logistic-regression-tag': delete_options['--logistic-regression-tag'], '--deepnet-tag': delete_options['--deepnet-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--association-tag': delete_options['--association-tag'], '--time-series-tag': delete_options['--time-series-tag'], '--topic-model-tag': delete_options['--topic-model-tag']}) defaults = general_defaults["BigMLer topic model"] subcommand_options["topic-model"] = get_topic_model_options( defaults=defaults) # general options subcommand_options["topic-model"].update(common_options) subcommand_options["topic-model"].update(source_options) subcommand_options["topic-model"].update(dataset_options) subcommand_options["topic-model"].update(test_options) subcommand_options["topic-model"].update(dataset_sampling_options) subcommand_options["topic-model"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--topic-model-tag': delete_options['--topic-model-tag'], '--topic-distribution-tag': delete_options['--topic-distribution-tag'], '--batch-topic-distribution-tag': delete_options[ \ '--batch-topic-distribution-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer deepnet"] subcommand_options["deepnet"] = \ get_deepnet_options(defaults=defaults) # general options subcommand_options["deepnet"].update(common_options) subcommand_options["deepnet"].update(source_options) subcommand_options["deepnet"].update(dataset_options) subcommand_options["deepnet"].update(test_options) subcommand_options["deepnet"].update(dataset_sampling_options) subcommand_options["deepnet"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--deepnet-tag': delete_options[ '--deepnet-tag'], '--objective': main_options['--objective'], '--evaluate': main_options['--evaluate'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--to-dataset': main_options['--to-dataset'], '--no-csv': main_options['--no-csv'], '--fields-map': main_options['--fields-map'], '--operating-point': main_options['--operating-point'], '--dataset-off': main_options['--dataset-off'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--cross-validation-rate': main_options[ '--cross-validation-rate'], '--number-of-evaluations': main_options[ '--number-of-evaluations'], '--no-no-csv': main_options['--no-no-csv']}) subparser = subparsers.add_parser(subcommand) parser_add_options(subparser, subcommand_options[subcommand]) # options to be transmitted from analyze to main chained_options = [ "--debug", "--username", "--api-key", "--resources-log", "--store", "--clear-logs", "--max-parallel-models", "--max-parallel-evaluations", "--objective", "--tag", "--no-tag", "--no-debug", "--no-dev", "--model-fields", "--balance", "--verbosity", "--resume", "--stack_level", "--no-balance", "--args-separator", "--name"] return main_parser, chained_options
def create_parser(general_defaults={}, constants={}, subcommand=MAIN): """Sets the accepted command options, variables, defaults and help """ defaults = general_defaults['BigMLer'] version = pkg_resources.require("BigMLer")[0].version version_text = """\ BigMLer %s - A Higher Level API to BigML's API Copyright 2012-2015 BigML Licensed under the Apache License, Version 2.0 (the \"License\"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an \"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.""" % version constants['version_text'] = version_text main_parser = argparse.ArgumentParser( description="A higher level API to BigML's API.", epilog="Happy predictive modeling!", formatter_class=argparse.RawTextHelpFormatter) main_parser.add_argument('--version', action='version', version=version_text) subparsers = main_parser.add_subparsers() # list of options common_options = get_common_options(defaults=defaults, constants=constants) delete_options = get_delete_options(defaults=defaults) source_options = get_source_options(defaults=defaults) dataset_options = get_dataset_options(defaults=defaults) test_options = get_test_options(defaults=defaults) multi_label_options = get_multi_label_options(defaults=defaults) # subcommand options subcommand_options = {} # specific options subcommand_options["main"] = get_main_options(defaults=defaults, constants=constants) # general options subcommand_options["main"].update(common_options) subcommand_options["main"].update(source_options) subcommand_options["main"].update(dataset_options) subcommand_options["main"].update(multi_label_options) subcommand_options["main"].update(test_options) subcommand_options["main"].update({ '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--model-tag': delete_options['--model-tag'], '--ensemble-tag': delete_options['--ensemble-tag'], '--prediction-tag': delete_options['--prediction-tag'], '--batch-prediction-tag': delete_options['--batch-prediction-tag']}) main_options = subcommand_options["main"] defaults = general_defaults["BigMLer analyze"] subcommand_options["analyze"] = get_analyze_options(defaults=defaults) subcommand_options["analyze"].update(common_options) # we add the options that should be transmitted to bigmler main subcommands # in analyze subcommand_options["analyze"].update({ '--objective': main_options['--objective'], '--max-parallel-models': main_options['--max-parallel-models'], '--max-parallel-evaluations': main_options[ '--max-parallel-evaluations'], '--model-fields': main_options['--model-fields'], '--balance': main_options['--balance'], '--no-balance': main_options['--no-balance'], '--number-of-models': main_options['--number-of-models'], '--sample-rate': main_options['--sample-rate'], '--missing-splits': main_options['--missing-splits'], '--pruning': main_options['--pruning'], '--weight-field': main_options['--weight-field'], '--replacement': main_options['--replacement'], '--objective-weights': main_options['--objective-weights'], '--model-attributes': main_options['--model-attributes'], '--ensemble-attributes': main_options['--ensemble-attributes'], '--tlp': main_options['--tlp'], '--randomize': main_options['--randomize'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer cluster"] subcommand_options["cluster"] = get_cluster_options(defaults=defaults) # general options subcommand_options["cluster"].update(common_options) subcommand_options["cluster"].update(source_options) subcommand_options["cluster"].update(dataset_options) subcommand_options["cluster"].update(test_options) subcommand_options["cluster"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--cluster-tag': delete_options['--cluster-tag'], '--centroid-tag': delete_options['--centroid-tag'], '--batch-centroid-tag': delete_options['--batch-centroid-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer anomaly"] subcommand_options["anomaly"] = get_anomaly_options(defaults=defaults) # general options subcommand_options["anomaly"].update(common_options) subcommand_options["anomaly"].update(source_options) subcommand_options["anomaly"].update(dataset_options) subcommand_options["anomaly"].update(test_options) subcommand_options["anomaly"].update({ '--cpp': main_options['--cpp'], '--fields-map': main_options['--fields-map'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--anomaly-tag': delete_options['--anomaly-tag'], '--anomaly-score-tag': delete_options['--anomaly-score-tag'], '--batch-anomaly-score-tag': delete_options['--batch-anomaly-score-tag'], '--prediction-info': main_options['--prediction-info'], '--prediction-header': main_options['--prediction-header'], '--prediction-fields': main_options['--prediction-fields'], '--reports': main_options['--reports'], '--remote': main_options['--remote'], '--no-batch': main_options['--no-batch'], '--no-csv': main_options['--no-csv'], '--no-no-csv': main_options['--no-no-csv'], '--to-dataset': main_options['--to-dataset']}) defaults = general_defaults["BigMLer sample"] subcommand_options["sample"] = get_sample_options(defaults=defaults) # general options subcommand_options["sample"].update(common_options) subcommand_options["sample"].update(source_options) subcommand_options["sample"].update(dataset_options) subcommand_options["sample"].update({ '--cpp': main_options['--cpp'], '--source-tag': delete_options['--source-tag'], '--dataset-tag': delete_options['--dataset-tag'], '--sample-tag': delete_options['--sample-tag'], '--reports': main_options['--reports']}) subcommand_options["delete"] = delete_options subcommand_options["delete"].update(common_options) defaults = general_defaults["BigMLer report"] subcommand_options["report"] = get_report_options(defaults=defaults) for subcommand in SUBCOMMANDS: subparser = subparsers.add_parser(subcommand) parser_add_options(subparser, subcommand_options[subcommand]) # options to be transmitted from analyze to main chained_options = [ "--debug", "--dev", "--username", "--api-key", "--resources-log", "--store", "--clear-logs", "--max-parallel-models", "--max-parallel-evaluations", "--objective", "--tag", "--no-tag", "--no-debug", "--no-dev", "--model-fields", "--balance", "--verbosity", "--resume", "--stack_level", "--no-balance", "--args-separator", "--name"] return main_parser, chained_options