def test_train_bilm_chars(self): vocab, data, options = self._get_vocab_data_options(True, True) train(options, data, 1, self.tmp_dir, self.tmp_dir) # now test tf.reset_default_graph() options, ckpt_file = load_options_latest_checkpoint(self.tmp_dir) data_test, vocab_test = self._get_data(True, True, True) perplexity = test(options, ckpt_file, data_test, batch_size=1) self.assertTrue(perplexity < 20.0)
def main(args): options, ckpt_file = load_options_latest_checkpoint(args.save_dir) # load the vocab if 'char_cnn' in options: max_word_length = options['char_cnn']['max_characters_per_token'] else: max_word_length = None vocab = load_vocab(args.vocab_file, max_word_length) test_prefix = args.test_prefix kwargs = { 'test': True, 'shuffle_on_load': False, } if options.get('bidirectional'): data = BidirectionalLMDataset(test_prefix, vocab, **kwargs) else: data = LMDataset(test_prefix, vocab, **kwargs) test(options, ckpt_file, data, batch_size=args.batch_size)
def test_train_skip_connections(self): bidirectional = True use_chars = False vocab, data, options = self._get_vocab_data_options( bidirectional, use_chars) options['lstm']['use_skip_connections'] = True train(options, data, 1, self.tmp_dir, self.tmp_dir) # now test tf.reset_default_graph() options, ckpt_file = load_options_latest_checkpoint(self.tmp_dir) data_test, vocab_test = self._get_data(bidirectional, use_chars, test=True) perplexity = test(options, ckpt_file, data_test, batch_size=1) self.assertTrue(perplexity < 20.0)
def test_train_shared_softmax_embedding(self): bidirectional = True use_chars = False vocab, data, options = self._get_vocab_data_options( bidirectional, use_chars, share_embedding_softmax=True) train(options, data, 1, self.tmp_dir, self.tmp_dir) # now test tf.reset_default_graph() options, ckpt_file = load_options_latest_checkpoint(self.tmp_dir) data_test, vocab_test = self._get_data(bidirectional, use_chars, test=True) perplexity = test(options, ckpt_file, data_test, batch_size=1) self.assertTrue(perplexity < 20.0)