Exemple #1
0
def init_island():
    np.random.seed(10)
    x = init_x_vals(START, STOP, NUM_POINTS)
    y = equation_eval(x)
    training_data = ExplicitTrainingData(x, y)

    component_generator = ComponentGenerator(x.shape[1])
    component_generator.add_operator(2)
    component_generator.add_operator(3)
    component_generator.add_operator(4)

    crossover = AGraphCrossover()
    mutation = AGraphMutation(component_generator)

    agraph_generator = AGraphGenerator(STACK_SIZE, component_generator)

    fitness = ExplicitRegression(training_data=training_data)
    local_opt_fitness = ContinuousLocalOptimization(fitness, algorithm='lm')
    evaluator = Evaluation(local_opt_fitness)

    ea = AgeFitnessEA(evaluator, agraph_generator, crossover, mutation,
                      MUTATION_PROBABILITY, CROSSOVER_PROBABILITY, POP_SIZE)

    island = Island(ea, agraph_generator, POP_SIZE)
    return island
def test_evaluation_evaluates_all_list_values_per_individual(
        population, fitness_function):
    evaluation = Evaluation(fitness_function)
    evaluation(population)
    assert evaluation.eval_count == 25
    for indv in population:
        assert indv.fit_set
        assert indv.fitness is not None
Exemple #3
0
def evol_alg():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    selection = Tournament(SELECTION_SIZE)
    fitness = MultipleValueFitnessFunction()
    evaluator = Evaluation(fitness)
    return MuPlusLambda(evaluator, selection, crossover, mutation, 0.2, 0.4,
                        OFFSPRING_SIZE)
def test_evaluation_evaluates_all_individuals(single_value_population_of_4,
                                              fitness_function):
    evaluation = Evaluation(fitness_function)
    evaluation(single_value_population_of_4)
    assert evaluation.eval_count == 4
    for indv in single_value_population_of_4:
        assert indv.fit_set
        assert indv.fitness is not None
def test_evaluation_skips_already_calculated_fitnesses(population,
                                                       fitness_function):
    evaluation = Evaluation(fitness_function)
    population[0].fitness = 1.0
    evaluation(population)
    assert evaluation.eval_count == 24
    for indv in population:
        assert indv.fit_set
        assert indv.fitness is not None
def ev_alg():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(np.random.random)
    selection = Tournament(2)
    training_data = np.linspace(0.1, 1, FULL_TRAINING_DATA_SIZE)
    fitness = DistanceToAverage(training_data)
    evaluator = Evaluation(fitness)
    return MuPlusLambda(evaluator, selection, crossover, mutation,
                        0., 1.0, MAIN_POPULATION_SIZE)
def test_evaluation_skips_already_calculated_fitnesses(
        single_value_population_of_4, fitness_function):
    evaluation = Evaluation(fitness_function)
    single_value_population_of_4[0].fitness = 1.0
    evaluation(single_value_population_of_4)
    assert evaluation.eval_count == 3
    for indv in single_value_population_of_4:
        assert indv.fit_set
        assert indv.fitness is not None
Exemple #8
0
def island():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(mutation_function)
    selection = Tournament(10)
    fitness = MultipleValueFitnessFunction()
    evaluator = Evaluation(fitness)
    ev_alg = MuPlusLambda(evaluator, selection, crossover, mutation, 0.2, 0.4,
                          20)
    generator = MultipleValueChromosomeGenerator(mutation_function, 10)
    return Island(ev_alg, generator, 25)
def test_fitness_equals_true_value_count(fitness_function, population):
    evaluation = Evaluation(fitness_function)
    evaluation(population)

    for indv in population:
        fitness = 0
        for val in indv.values:
            if val == False:
                fitness += 1
        assert indv.fitness == fitness_function(indv)
        assert fitness == indv.fitness
Exemple #10
0
def create_evolutionary_algorithm():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(generate_0_or_1)
    variation_phase = VarOr(crossover, mutation, crossover_probability=0.4,
                            mutation_probability=0.4)

    fitness = OneMaxFitnessFunction()
    evaluation_phase = Evaluation(fitness)

    selection_phase = Tournament(tournament_size=2)

    return EvolutionaryAlgorithm(variation_phase, evaluation_phase,
                                 selection_phase)
Exemple #11
0
def main():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(get_random_float)
    selection = Tournament(10)
    fitness = ZeroMinFitnessFunction()
    local_opt_fitness = ContinuousLocalOptimization(fitness)
    evaluator = Evaluation(local_opt_fitness)
    ea = MuPlusLambda(evaluator, selection, crossover, mutation, 0.4, 0.4, 20)
    generator = MultipleFloatChromosomeGenerator(get_random_float, 8)
    island = Island(ea, generator, 25)

    best_indv_values = []
    best_indv_values.append(island.best_individual().values)
    for i in range(500):
        island.execute_generational_step()
        best_indv_values.append(island.best_individual().values)

    bingo.animation.animate_data(best_indv_values)
Exemple #12
0
def main():
    crossover = SinglePointCrossover()
    mutation = SinglePointMutation(get_random_float)
    selection = Tournament(10)
    fitness = ZeroMinFitnessFunction()
    local_opt_fitness = ContinuousLocalOptimization(fitness)
    evaluator = Evaluation(local_opt_fitness)
    ea = MuPlusLambda(evaluator, selection, crossover, mutation, 0.4, 0.4, 20)
    generator = MultipleFloatChromosomeGenerator(get_random_float, 8)
    island = Island(ea, generator, 25)
    for i in range(25):
        island.execute_generational_step()
        print("\nGeneration #", i)
        print("-" * 80, "\n")
        report_max_min_mean_fitness(island.population)
        print("\npopulation: \n")
        for indv in island.population:
            print(["{0:.2f}".format(val) for val in indv.values])
Exemple #13
0
def onemax_evaluator(onemax_fitness):
    return Evaluation(onemax_fitness)
def test_setting_eval_count(single_value_population_of_4, fitness_function):
    evaluation = Evaluation(fitness_function)
    evaluation.eval_count = -4
    assert evaluation.eval_count == -4
    evaluation(single_value_population_of_4)
    assert evaluation.eval_count == 0