Exemple #1
0
def densityPlot(x,
                y,
                bins2D=None,
                bins=None,
                xscale='log',
                yscale='log',
                nbinsX=1.5,
                nbinsY=1.5,
                weights=None):
    """ 
    2-Plot static distance vs temporal distance
    Plot fraction of Finite distances vs temporal distance
    Plot the distance distribution
    """
    x = np.array(x)
    y = np.array(y)
    if bins2D == None or bins == None:
        xidx, yidx = getLimits2D(x, y, xscale, yscale)
        minValueX, maxValueX = min(x[xidx]), max(x[xidx])
        minValueY, maxValueY = min(y[yidx]), max(y[yidx])
        print minValueX, maxValueX, minValueY, maxValueY
        bins2D = binner.Bins2D(float, minValueX, maxValueX, xscale, nbinsX,
                               float, minValueY, maxValueY, yscale, nbinsY)
        bins = binner.Bins(float, minValueX, maxValueX, xscale, nbinsX)

    binned_data, b1, b2 = np.histogram2d(x,
                                         y,
                                         bins=bins2D.bin_limits,
                                         weights=weights)
    binned_data = binned_data.astype(np.float64)
    X, Y = bins2D.edge_grids
    z, b = np.histogram(x, bins=bins.bin_limits, weights=weights)
    for i in np.nonzero(z)[0]:
        binned_data[i, :] = binned_data[i, :] / z[i]
    binned_data = binned_data.transpose()
    binned_data = np.ma.masked_array(binned_data, binned_data == 0)
    if weights == None:
        z1, b = np.histogram(x, bins=bins.bin_limits, weights=y)
    else:
        z1, b = np.histogram(x, bins=bins.bin_limits, weights=y * weights)
    z1 = z1.astype(np.float64)
    for i in np.nonzero(z)[0]:
        z1[i] = z1[i] / z[i]
    return X, Y, binned_data, bins, z1
Exemple #2
0
    def setUp(self):
        self.x_coords = [1, 1, 2, 4, 4, 3, 1, 2]
        self.y_coords = [1, 4, 3, 5, 6, 1, 8, 6]
        values = [1, 3, 7, 5, 6, 3, 1, 10]
        weights = [1, 3, 1, 0, 100, 0, 1, 10]

        self.coords = zip(self.x_coords, self.y_coords)
        self.data = zip(self.x_coords, self.y_coords, values)
        self.weighted_data = zip(self.x_coords, self.y_coords, values, weights)

        bad_x_coords = [1, 1, 2, 4, 4, 5, 1, 2]
        bad_y_coords = [1, 4, 0, 5, 6, 1, 8, 6]
        self.bad_coords_A = zip(bad_x_coords, self.y_coords)
        self.bad_coords_B = zip(self.x_coords, bad_y_coords)
        self.bad_data_A = zip(bad_x_coords, self.y_coords, values)
        self.bad_data_B = zip(self.x_coords, bad_y_coords, values)
        self.bad_wdata_A = zip(bad_x_coords, self.y_coords, values, weights)
        self.bad_wdata_B = zip(self.x_coords, bad_y_coords, values, weights)

        self.bins = binner.Bins2D(int, 0, 0, 'custom', [1, 1.5, 4], int, 0, 0,
                                  'custom', [1, 4.5, 5.5, 6.5, 10])