def test_generate_sbml_model(): # Test a non-reversible reaction s1 = Species("S1") s2 = Species("S2") rx0 = Reaction.from_massaction(inputs=[s1], outputs=[s2], k_forward=0.1) crn = ChemicalReactionNetwork(species=[s1, s2], reactions=[rx0]) # generate an sbml model document, model = crn.generate_sbml_model() # all species from the CRN are accounted for assert len(model.getListOfSpecies()) == len(crn.species) # all reactions from the CRN are accounted for assert len(model.getListOfReactions()) == len(crn.reactions) document2, model2 = crn.generate_sbml_model(check_validity=False) assert len(model2.getListOfSpecies()) == len( crn.species) #the same model is made if you dont check validity assert len(model2.getListOfReactions()) == len( crn.reactions) #the same model is made if you dont check validity # reversible needs to be off! # assert not model.getListOfReactions()[0].isSetReversible() # test a reversible reaction rx1 = Reaction.from_massaction(inputs=[s1], outputs=[s2], k_forward=0.1, k_reverse=0.1) rxn_list = [rx1] crn = ChemicalReactionNetwork(species=[s1, s2], reactions=rxn_list) # generate an sbml model document, model = crn.generate_sbml_model() # all species from the CRN are accounted for assert len(model.getListOfSpecies()) == len(crn.species) # all reactions from the CRN are accounted for assert len(model.getListOfReactions()) == 2 # although sbml represents a reverisble reaction with reversible flag # BioCRNpyler always creates two reactions, because this is correct # for stochastic simulation with SBML. sbml_rxn = model.getListOfReactions() # assert not sbml_rxn[0].isSetReversible() # assert not sbml_rxn[1].isSetReversible() # Test propagation for for_bioscrape keyword # generate an sbml model with for_bioscrape = True document, model = crn.generate_sbml_model(for_bioscrape=True) for r in model.getListOfReactions(): assert r.getAnnotation() is not None assert validate_sbml(document) == 0 # generate an sbml model with for_bioscrape = False document, model = crn.generate_sbml_model(for_bioscrape=False) for r in model.getListOfReactions(): assert r.getAnnotation() is None assert validate_sbml(document) == 0
def test_generate_sbml_model_parameter_names(): s1 = Species("S1") s2 = Species("S2") # The correct parameter formating should be: "name_partid_mechanism" key0 = ParameterKey(mechanism="m", part_id="p", name="n") k0 = ParameterEntry("n", 1.0, parameter_key=key0) # Tests 3 Parameter entries with seemingly redundant keys. # In SBML parameter id, None will be kept blank, resulting in # different numbers of underscores between the V's k1 = ParameterEntry("v", 1.0, parameter_key=None) key2 = ParameterKey(mechanism=None, part_id="v", name="v") k2 = ParameterEntry("v", 2.0, parameter_key=key2) key3 = ParameterKey(mechanism="v", part_id=None, name="v") k3 = ParameterEntry("v", 2.0, parameter_key=key3) key4 = ParameterKey(mechanism="v", part_id="v", name="v") k4 = ParameterEntry("v", 2.0, parameter_key=key4) # Throw a duplicate key for good measure! rx0 = Reaction.from_massaction(inputs=[], outputs=[s1], k_forward=k0, k_reverse=k1) rx1 = Reaction.from_massaction(inputs=[s1], outputs=[s2], k_forward=k1, k_reverse=k2) rx2 = Reaction.from_massaction(inputs=2 * [s1], outputs=2 * [s2], k_forward=k3, k_reverse=k4) rxn_list = [rx0, rx1, rx2] crn = ChemicalReactionNetwork(species=[s1, s2], reactions=rxn_list) document, model = crn.generate_sbml_model() assert validate_sbml(document) == 0 correct_ids = set(["v_v_", "v__v", "v_v_v", "v__", "n_p_m"]) ids = set([p.getId() for p in model.getListOfParameters()]) assert ids == correct_ids
propensity_types = [ 'hillpositive', 'proportionalhillpositive', 'hillnegative', 'proportionalhillnegative', 'massaction', 'general' ] kb = 100 ku = 10 kex = 1. kd = .1 G = Species(name="G", material_type="dna") #DNA A = Species(name="A", material_type="protein") #Activator GA = ComplexSpecies([G, A, A]) #Activated Gene X = Species(name="X", material_type="protein") rxnd = Reaction([X], [], kd) #Massaction Unregulated species1 = [G, A, GA, X] rxn0_1 = Reaction([G, A, A], [GA], k=kb, k_rev=ku) rxn0_2 = Reaction([GA], [GA, X], k=kex) CRN0 = ChemicalReactionNetwork(species1, [rxn0_1, rxn0_2, rxnd]) rxn1_1 = Reaction([G, A, A], [GA], k=kb, k_rev=ku) rxn1_2 = Reaction([G], [G, X], k=kex) CRN1 = ChemicalReactionNetwork(species1, [rxn1_1, rxn1_2, rxnd]) #hill positive species2 = [G, A, X] rxn2_1 = Reaction([G], [G, X],
def test_add_reaction(): """ Test adding reaction to SBML for combinatorially created list of models """ #create species S1, S2, S3 = Species("S1"), Species("S2"), Species("S3") species = [S1, S2, S3] #create some parameters key1 = ParameterKey(name="k", mechanism="m", part_id="pid") k1 = ParameterEntry("k1", 1.11, key1) k2 = ParameterEntry("k2", 2.22) stochiometries = [([], [S1]), ([S1], []), ([S1], [S2]), (2 * [S1], [S2, S3])] propensities = [ MassAction(k_forward=1.), MassAction(k_forward=1, k_reverse=.1), MassAction(k_forward=k1), MassAction(k_forward=k1, k_reverse=k2), HillPositive(k=1, n=2., K=3., s1=S1), HillPositive(k=k1, n=2., K=k2, s1=S1), HillNegative(k=1, n=2., K=3., s1=S1), HillNegative(k=k1, n=k2, K=3., s1=S1), ProportionalHillPositive(k=1, n=2, K=3., s1=S1, d=S2), ProportionalHillPositive(k=k1, n=2, K=k2, s1=S1, d=S2), ProportionalHillNegative(k=1, n=2, K=3., s1=S1, d=S2), ProportionalHillNegative(k=k1, n=2, K=k2, s1=S1, d=S2), GeneralPropensity('k1*2 - k2/S1^2', propensity_species=[S1], propensity_parameters=[k1, k2]), GeneralPropensity('S1^2 + S2^2 + S3^2', propensity_species=[S1, S2, S3], propensity_parameters=[]) ] for prop in propensities: #Cycle through different propensity types for inputs, outputs in stochiometries: #cycle through different stochiometries for stochastic in [True, False]: #Toggle Stochastic rxn_num = 0 model_id = f"{prop.name}_model_with_stochastic_{stochastic}" document, model = create_sbml_model(model_id=model_id) add_all_species(model, species) rxn = Reaction(inputs, outputs, propensity_type=prop) #create a reaction try: sbml_reaction = add_reaction( model, rxn, f"r{rxn_num}", stochastic=stochastic) #add reaction to SBML Model rxn_num += 1 #increment reaction id crn_reactants = [str(s) for s in inputs] crn_products = [str(s) for s in outputs] sbml_products = [ p.getSpecies() for p in sbml_reaction.getListOfProducts() ] sbml_reactants = [ p.getSpecies() for p in sbml_reaction.getListOfReactants() ] #test that the reaction has the right inputs and outputs assert set(crn_reactants) == set(sbml_reactants) assert set(crn_products) == set(sbml_products) if len(crn_reactants) > 0: assert all( crn_reactants.count(s.getSpecies()) == int( s.getStoichiometry()) for s in sbml_reaction.getListOfReactants()) if len(crn_products) > 0: assert all( crn_products.count(s.getSpecies()) == int( s.getStoichiometry()) for s in sbml_reaction.getListOfProducts()) assert not sbml_reaction.getReversible() #TODO is there a smart way to test that the rate formula is correct? assert validate_sbml( document) == 0 # Validate the SBML model except Exception as e: #collect errors to display error_txt = f"Unexpected Error: in sbmlutil.add_reaction {rxn} for {model_id}. \n {str(e)}." raise Exception(error_txt)
def test_sbml_basics(): """ This test aims to test all Python libSBML functions and their return values. It will catch errors if certain libSBML functions are not working as expected. For example: At times, if the reaction rate law string is mis-formatted, it is ignored by the SBML writing code and not caught by any other tests. Similarly, this test will catch modifier reference, parameter values etc. """ def check(value, message): """If 'value' is None, prints an error message constructed using 'message' and then exits with status code 1 (for libsbml). If 'value' is an integer, it assumes it is a libSBML return status code. If the code value is LIBSBML_OPERATION_SUCCESS, returns without further action; if it is not, prints an error message constructed using 'message' along with text from libSBML explaining the meaning of the code, and exits with status code 1. """ if value == None: raise SystemExit('LibSBML returned a null value trying to ' + message + '.') elif type(value) is int: if value == libsbml.LIBSBML_OPERATION_SUCCESS: return else: err_msg = 'Error encountered trying to ' + message + '.' \ + 'LibSBML returned error code ' + str(value) + ': "' \ + libsbml.OperationReturnValue_toString(value).strip() + '"' raise SystemExit(err_msg) else: return from biocrnpyler.sbmlutil import _create_global_parameter, _create_local_parameter from biocrnpyler.sbmlutil import _create_modifiers, _create_products, _create_reactants # generate an sbml model document, model = create_sbml_model() # If the document/model creation failed the following two lines # will catch it: check(document, 'create SBMLDocument object') check(model, 'create SBML Model object') S1 = Species("S1") S2 = Species("S2") compartment = model.getCompartment(0) check(compartment, 'get compartment in SBML model') sbml_species = add_species(model, compartment, S1, initial_concentration=10) sbml_species2 = add_species(model, compartment, S2, initial_concentration=10) check(sbml_species.getId(), 'get ID for SBML species') check(sbml_species.getInitialConcentration(), 'get concentration for SBML species') prop_hill = HillPositive(k=1, s1=S2, K=10, n=2) crn_rxn = Reaction([S1], [], propensity_type=prop_hill) check(model.createReaction(), 'create a new SBML reaction') rx1 = model.getReaction(0) check(rx1, 'get the created reaction') check(rx1.setId('r1'), 'set ID for reaction') check(rx1.setReversible(False), 'set reversible attribute for reaction') _create_reactants(crn_rxn.inputs, rx1, model) _create_products(crn_rxn.outputs, rx1, model) _create_modifiers(crn_rxn, rx1, model) check(rx1.getModifier(0), 'create species modifier') modifier = rx1.getModifier(0) check(modifier.getSpecies(), 'get the species id for the modifier reference') rateLaw = rx1.createKineticLaw() check(rateLaw, 'create kineticLaw for reaction') local_param = _create_local_parameter(rateLaw, 'k_local', 10) check(local_param, 'create local parameter in SBML model') global_param = _create_global_parameter(model, 'k_global', 10) check(global_param, 'create global parameter in SBML model') check(rateLaw.setFormula('k_local*10 - k_global/2'), 'set rate formula for reaction') validator = validateSBML(ucheck=False) validation_result = validator.validate(document, print_results=True) if validation_result > 0: raise Exception('Invalid SBML model.')
def test_add_reaction_for_bioscrape(): """ Generates models for bioscrape including the particular annotations needed. """ S1, S2, S3 = Species("S1"), Species("S2"), Species("S3") species = [S1, S2, S3] for_bioscrape = True #Toggle for_bioscrape propensities = [ MassAction(k_forward=1, k_reverse=.1), HillPositive(k=1, n=2., K=3., s1=S1), HillNegative(k=1, n=2., K=3., s1=S1), ProportionalHillPositive(k=1, n=2, K=3., s1=S1, d=S2), ProportionalHillNegative(k=1, n=2, K=3., s1=S1, d=S2) ] for prop in propensities: rxn_num = 0 model_id = f"{prop.name}_model_with_for_bioscrape_{for_bioscrape}" document, model = create_sbml_model(model_id=model_id) add_all_species(model, species) rxn = Reaction([S1], [S2, S3], propensity_type=prop) #create a reaction try: sbml_reaction = add_reaction( model, rxn, f"r{rxn_num}", for_bioscrape=for_bioscrape) #add reaction to SBML Model rxn_num += 1 #increment reaction id crn_reactants = [str(S1)] crn_products = [str(S2), str(S3)] sbml_products = [ p.getSpecies() for p in sbml_reaction.getListOfProducts() ] sbml_reactants = [ p.getSpecies() for p in sbml_reaction.getListOfReactants() ] #test that the reaction has the right inputs and outputs assert set(crn_reactants) == set(sbml_reactants) assert set(crn_products) == set(sbml_products) if len(crn_reactants) > 0: assert all( crn_reactants.count(s.getSpecies()) == int( s.getStoichiometry()) for s in sbml_reaction.getListOfReactants()) if len(crn_products) > 0: assert all( crn_products.count(s.getSpecies()) == int( s.getStoichiometry()) for s in sbml_reaction.getListOfProducts()) assert not sbml_reaction.getReversible() # Check annotations: sbml_annotation = sbml_reaction.getAnnotationString() check_var = f"type={prop.name}" in str(sbml_annotation) assert check_var == True #Test that the sbml annotation has keys for all species and parameters for k in prop.propensity_dict["parameters"]: #convert k_reverse and k_forward to just k k = k.replace("_reverse", "").replace("_forward", "") check_var = f"{k}=" in sbml_annotation assert check_var == True #be sure that "k=" only shows up once in the annotation assert sbml_annotation.count(f"{k}=") == 1 for s in prop.propensity_dict["species"]: check_var = f"{s}=" in sbml_annotation assert check_var == True #TODO is there a smart way to test that the rate formula is correct? assert validate_sbml(document) == 0 # Validate the SBML model except Exception as e: #collect errors error_txt = f"Unexpected Error: in sbmlutil.add_reaction {rxn} for {model_id}. \n {str(e)}." raise Exception(error_txt)
# Names of different supported propensities for prop in Propensity.get_available_propensities(): print(prop) kb = 100 ku = 10 kex = 1. kd = .1 G = Species(name="G", material_type="dna") #DNA A = Species(name="A", material_type="protein") #Activator GA = ComplexSpecies([G, A, A]) #Activated Gene X = Species(name="X", material_type="protein") rxnd = Reaction.from_massaction(inputs=[X], outputs=[], k_forward=kd) # Massaction Unregulated species1 = [G, A, GA, X] rxn0_1 = Reaction.from_massaction(inputs=[G, A, A], outputs=[GA], k_forward=kb, k_reverse=ku) rxn0_2 = Reaction.from_massaction(inputs=[GA], outputs=[GA, X], k_forward=kex) CRN0 = ChemicalReactionNetwork(species1, [rxn0_1, rxn0_2, rxnd]) mak1 = MassAction(k_forward=kb, k_reverse=ku) mak2 = MassAction(k_forward=kex) rxn1_1 = Reaction([G, A, A], [GA], propensity_type=mak1) rxn1_2 = Reaction([G], [G, X], propensity_type=mak2)