Exemple #1
0
def test_binarize():
    binarize_spec = Preprocessing(name="binarize", kwargs={"threshold": 14})
    data = xr.DataArray(np.arange(30).reshape(2, 3, 5), dims=("x", "y", "c"))
    expected = xr.zeros_like(data)
    expected[{"x": slice(1, None)}] = 1
    preprocessing = make_preprocessing([binarize_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemple #2
0
def test_scale_linear_no_channel():
    spec = Preprocessing(name="scale_linear",
                         kwargs={
                             "offset": 1,
                             "gain": 2,
                             "axes": "yx"
                         })
    data = xr.DataArray(np.arange(6).reshape(2, 3), dims=("x", "y"))
    expected = xr.DataArray(np.array([[1, 3, 5], [7, 9, 11]]), dims=("x", "y"))
    preprocessing = make_preprocessing([spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemple #3
0
def test_scale_linear():
    spec = Preprocessing(name="scale_linear",
                         kwargs={
                             "offset": [1, 2, 42],
                             "gain": [1, 2, 3],
                             "axes": "yx"
                         })
    data = xr.DataArray(np.arange(6).reshape(1, 2, 3), dims=("x", "y", "c"))
    expected = xr.DataArray(np.array([[[1, 4, 48], [4, 10, 57]]]),
                            dims=("x", "y", "c"))
    preprocessing = make_preprocessing([spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemple #4
0
def test_zero_mean_unit_variance_preprocessing():
    zero_mean_spec = Preprocessing(name="zero_mean_unit_variance", kwargs={})
    data = xr.DataArray(np.arange(9).reshape(3, 3), dims=("x", "y"))
    expected = xr.DataArray(
        np.array([
            [-1.54919274, -1.16189455, -0.77459637],
            [-0.38729818, 0.0, 0.38729818],
            [0.77459637, 1.16189455, 1.54919274],
        ]),
        dims=("x", "y"),
    )
    preprocessing = make_preprocessing([zero_mean_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result)
Exemple #5
0
def test_combination_of_preprocessing_steps_with_dims_specified():
    zero_mean_spec = Preprocessing(name="zero_mean_unit_variance",
                                   kwargs={"axes": ("x", "y")})
    data = xr.DataArray(np.arange(18).reshape(2, 3, 3), dims=("c", "x", "y"))

    expected = xr.DataArray(
        np.array([
            [-1.54919274, -1.16189455, -0.77459637],
            [-0.38729818, 0.0, 0.38729818],
            [0.77459637, 1.16189455, 1.54919274],
        ]),
        dims=("x", "y"),
    )

    preprocessing = make_preprocessing([ADD_BATCH_DIM, zero_mean_spec])
    result = preprocessing(data)
    xr.testing.assert_allclose(expected, result[0][0])
Exemple #6
0
def make_ensure_dtype_preprocessing(dtype):
    return Preprocessing(name="__tiktorch_ensure_dtype",
                         kwargs={"dtype": dtype})
Exemple #7
0
from typing import List

import numpy as np
import xarray as xr
from bioimageio.spec.nodes import Preprocessing

from ._types import Transform

ADD_BATCH_DIM = Preprocessing(name="__tiktorch_add_batch_dim", kwargs=None)


def make_ensure_dtype_preprocessing(dtype):
    return Preprocessing(name="__tiktorch_ensure_dtype",
                         kwargs={"dtype": dtype})


def scale_linear(tensor: xr.DataArray, *, gain, offset, axes) -> xr.DataArray:
    """scale the tensor with a fixed multiplicative and additive factor"""
    scale_axes = tuple(ax for ax in tensor.dims
                       if (ax not in axes and ax != "b"))
    if scale_axes:
        gain = xr.DataArray(np.atleast_1d(gain), dims=scale_axes)
        offset = xr.DataArray(np.atleast_1d(offset), dims=scale_axes)
    return tensor * gain + offset


def zero_mean_unit_variance(tensor: xr.DataArray,
                            axes=None,
                            eps=1.0e-6,
                            mode="per_sample") -> xr.DataArray:
    if axes:
Exemple #8
0
def test_unknown_preprocessing_should_raise():
    mypreprocessing = Preprocessing(name="mycoolpreprocessing",
                                    kwargs={"axes": ("x", "y")})
    with pytest.raises(NotImplementedError):
        make_preprocessing([mypreprocessing])