Exemple #1
0
def prepare_ocp(model_path, phase_time, number_shooting_points):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)

    torque_min, torque_max, torque_init = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = (
        {
            "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
            "weight": -1
        },
        {
            "type": Objective.Lagrange.MINIMIZE_TORQUE,
            "weight": 1 / 100
        },
    )

    # Dynamics
    problem_type = ProblemType.torque_driven_with_contact

    # Constraints
    constraints = ()

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len,
                      max_bound=[torque_max] * tau_mapping.reduce.len)

    U_init = InitialConditions([torque_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", show_online_optim=False, ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    torque_min, torque_max, torque_init = -100, 100, 0
    all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]), Mapping([0, 1, 2]))

    # Add objective functions
    objective_functions = {"type": Objective.Lagrange.MINIMIZE_TORQUE, "weight": 100}

    # Dynamics
    variable_type = ProblemType.torque_driven

    # Constraints
    constraints = (
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.START, "first_marker": 0, "second_marker": 1,},
        {"type": Constraint.ALIGN_MARKERS, "instant": Instant.END, "first_marker": 0, "second_marker": 2,},
    )

    # Path constraint
    X_bounds = QAndQDotBounds(biorbd_model, all_generalized_mapping)
    for i in range(3, 6):
        X_bounds.first_node_min[i] = 0
        X_bounds.last_node_min[i] = 0
        X_bounds.first_node_max[i] = 0
        X_bounds.last_node_max[i] = 0

    # Initial guess
    X_init = InitialConditions([0] * all_generalized_mapping.reduce.len * 2)

    # Define control path constraint
    U_bounds = Bounds(
        [torque_min] * all_generalized_mapping.reduce.len, [torque_max] * all_generalized_mapping.reduce.len,
    )
    U_init = InitialConditions([torque_init] * all_generalized_mapping.reduce.len)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        variable_type,
        number_shooting_points,
        final_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        ode_solver=ode_solver,
        all_generalized_mapping=all_generalized_mapping,
        show_online_optim=show_online_optim,
    )
Exemple #3
0
def plot_CoM(x, model_path):
    m = biorbd.Model(model_path)
    q_mapping = BidirectionalMapping(
        Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]), Mapping([0, 1, 2, 4, 7, 8, 9])
    )
    q_reduced = x[:7, :]
    q_expanded = q_mapping.expand.map(q_reduced)
    from casadi import Function, MX
    import numpy as np

    q_sym = MX.sym("q", m.nbQ(), 1)
    CoM_func = Function("Compute_CoM", [q_sym], [m.CoM(q_sym).to_mx()], ["q"], ["CoM"],).expand()
    CoM = np.array(CoM_func(q_expanded[:, :]))
    return CoM[2]
Exemple #4
0
def CoM_dot_Z_last_node_positivity(ocp, nlp, t, x, u, p):
    from casadi import Function, MX
    q_reduced = x[0][:nlp["nbQ"]]
    qdot_reduced = x[0][nlp["nbQ"]:]

    q_mapping = BidirectionalMapping(
        Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]), Mapping([0, 1, 2, 4, 7, 8, 9])
    )
    q_expanded = q_mapping.expand.map(q_reduced)
    qdot_expanded = q_mapping.expand.map(qdot_reduced)

    q_sym = MX.sym("q", q_expanded.size()[0], 1)
    qdot_sym = MX.sym("q_dot", qdot_expanded.size()[0], 1)
    CoM_dot_func = Function(
        "Compute_CoM_dot", [q_sym, qdot_sym], [nlp["model"].CoMdot(q_sym, qdot_sym).to_mx()], ["q", "q_dot"], ["CoM_dot"],
    ).expand()
    CoM_dot = CoM_dot_func(q_expanded, qdot_expanded)
    return CoM_dot[2]
Exemple #5
0
def plot_CoM_dot(x, model_path):
    m = biorbd.Model(model_path)
    q_mapping = BidirectionalMapping(
        Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]),
        Mapping([0, 1, 2, 4, 7, 8, 9]))
    q_reduced = x[:7, :]
    qdot_reduced = x[7:, :]
    q_expanded = q_mapping.expand.map(q_reduced)
    qdot_expanded = q_mapping.expand.map(qdot_reduced)

    q_sym = MX.sym("q", m.nbQ(), 1)
    qdot_sym = MX.sym("q_dot", m.nbQdot(), 1)
    CoM_dot_func = Function(
        "Compute_CoM_dot",
        [q_sym, qdot_sym],
        [m.CoMdot(q_sym, qdot_sym).to_mx()],
        ["q", "q_dot"],
        ["CoM_dot"],
    ).expand()
    CoM_dot = np.array(CoM_dot_func(q_expanded[:, :], qdot_expanded[:, :]))
    return CoM_dot[2]
Exemple #6
0
def prepare_ocp(model_path, phase_time, number_shooting_points, direction,
                boundary):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    tau_min, tau_max, tau_ini = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=1,
        boundary=boundary,
    )
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=2,
        boundary=boundary,
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * tau_mapping.reduce.len,
                  [tau_max] * tau_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_ini] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
Exemple #7
0
def generate_data(biorbd_model, final_time, nb_shooting):
    # Aliases
    nb_q = biorbd_model.nbQ()
    nb_qdot = biorbd_model.nbQdot()
    nb_tau = biorbd_model.nbGeneralizedTorque()
    nb_mus = biorbd_model.nbMuscleTotal()
    nb_markers = biorbd_model.nbMarkers()
    dt = final_time / nb_shooting

    # Casadi related stuff
    symbolic_states = MX.sym("x", nb_q + nb_qdot + nb_mus, 1)
    symbolic_controls = MX.sym("u", nb_tau + nb_mus, 1)
    nlp = {
        "model":
        biorbd_model,
        "nbTau":
        nb_tau,
        "nbQ":
        nb_q,
        "nbQdot":
        nb_qdot,
        "nbMuscle":
        nb_mus,
        "q_mapping":
        BidirectionalMapping(Mapping(range(nb_q)), Mapping(range(nb_q))),
        "q_dot_mapping":
        BidirectionalMapping(Mapping(range(nb_qdot)), Mapping(range(nb_qdot))),
        "tau_mapping":
        BidirectionalMapping(Mapping(range(nb_tau)), Mapping(range(nb_tau))),
    }
    markers_func = []
    for i in range(nb_markers):
        markers_func.append(
            Function(
                "ForwardKin",
                [symbolic_states],
                [biorbd_model.marker(symbolic_states[:nb_q], i).to_mx()],
                ["q"],
                ["marker_" + str(i)],
            ).expand())
    dynamics_func = Function(
        "ForwardDyn",
        [symbolic_states, symbolic_controls],
        [
            Dynamics.forward_dynamics_muscle_excitations_and_torque_driven(
                symbolic_states, symbolic_controls, nlp)
        ],
        ["x", "u"],
        ["xdot"],
    ).expand()

    def dyn_interface(t, x, u):
        u = np.concatenate([np.zeros(2), u])
        return np.array(dynamics_func(x, u)).squeeze()

    # Generate some muscle excitations
    U = np.random.rand(nb_shooting, nb_mus)

    # Integrate and collect the position of the markers accordingly
    X = np.ndarray(
        (biorbd_model.nbQ() + biorbd_model.nbQdot() + nb_mus, nb_shooting + 1))
    markers = np.ndarray((3, biorbd_model.nbMarkers(), nb_shooting + 1))

    def add_to_data(i, q):
        X[:, i] = q
        for j, mark_func in enumerate(markers_func):
            markers[:, j, i] = np.array(mark_func(q)).squeeze()

    x_init = np.array([0] * nb_q + [0] * nb_qdot + [0.5] * nb_mus)
    add_to_data(0, x_init)
    for i, u in enumerate(U):
        sol = solve_ivp(dyn_interface, (0, dt),
                        x_init,
                        method="RK45",
                        args=(u, ))
        x_init = sol["y"][:, -1]
        add_to_data(i + 1, x_init)

    time_interp = np.linspace(0, final_time, nb_shooting + 1)
    return time_interp, markers, X, U
def prepare_ocp(model_path,
                phase_time,
                number_shooting_points,
                use_actuators=False):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)

    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -500, 500, 0

    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1 / 100)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * tau_mapping.reduce.len,
                  [tau_max] * tau_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        tau_mapping=tau_mapping,
    )
Exemple #9
0
def prepare_ocp(model_path,
                phase_time,
                number_shooting_points,
                use_symmetry=True,
                use_actuators=True):
    # --- Options --- #
    # Model path
    biorbd_model = [biorbd.Model(elt) for elt in model_path]

    nb_phases = len(biorbd_model)
    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -500, 500, 0

    if use_symmetry:
        q_mapping = BidirectionalMapping(
            Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]),
            Mapping([0, 1, 2, 4, 7, 8, 9]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = BidirectionalMapping(
            Mapping([-1, -1, -1, -1, 0, -1, 0, 1, 2, 3, 1, 2, 3], [5]),
            Mapping([4, 7, 8, 9]))
        tau_mapping = tau_mapping, tau_mapping

    else:
        q_mapping = BidirectionalMapping(
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
            Mapping([i for i in range(biorbd_model[0].nbQ())]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = q_mapping

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1,
                            phase=1)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # --- Constraints --- #
    constraints = ConstraintList()

    # Positivity constraints of the normal component of the reaction forces
    contact_axes = (1, 2, 4, 5)
    for i in contact_axes:
        constraints.add(Constraint.CONTACT_FORCE_INEQUALITY,
                        phase=0,
                        direction="GREATER_THAN",
                        instant=Instant.ALL,
                        contact_force_idx=i,
                        boundary=0)
    contact_axes = (1, 3)
    for i in contact_axes:
        constraints.add(Constraint.CONTACT_FORCE_INEQUALITY,
                        phase=1,
                        direction="GREATER_THAN",
                        instant=Instant.ALL,
                        contact_force_idx=i,
                        boundary=0)

    # Non-slipping constraints
    # N.B.: Application on only one of the two feet is sufficient, as the slippage cannot occurs on only one foot.
    constraints.add(Constraint.NON_SLIPPING,
                    phase=0,
                    instant=Instant.ALL,
                    normal_component_idx=(1, 2),
                    tangential_component_idx=0,
                    static_friction_coefficient=0.5)
    constraints.add(Constraint.NON_SLIPPING,
                    phase=1,
                    instant=Instant.ALL,
                    normal_component_idx=1,
                    tangential_component_idx=0,
                    static_friction_coefficient=0.5)

    # Custom constraints for contact forces at transitions
    # constraints_second_phase.append(
    #     {"type": Constraint.CUSTOM, "function": from_2contacts_to_1, "instant": Instant.START}
    # )

    # Custom constraints for positivity of CoM_dot on z axis just before the take-off
    constraints.add(CoM_dot_Z_last_node_positivity,
                    phase=1,
                    instant=Instant.END,
                    min_bound=0,
                    max_bound=np.inf)

    # TODO: Make it works also with no symmetry (adapt to refactor)
    # if not use_symmetry:
    #     first_dof = (3, 4, 7, 8, 9)
    #     second_dof = (5, 6, 10, 11, 12)
    #     coef = (-1, 1, 1, 1, 1)
    #     for i in range(len(first_dof)):
    #         for elt in [
    #             constraints_first_phase,
    #             constraints_second_phase,
    #         ]:
    #             elt.append(
    #                 {
    #                     "type": Constraint.PROPORTIONAL_STATE,
    #                     "instant": Instant.ALL,
    #                     "first_dof": first_dof[i],
    #                     "second_dof": second_dof[i],
    #                     "coef": coef[i],
    #                 }
    #             )

    # constraints = (
    #     constraints_first_phase,
    #     constraints_second_phase,
    # )

    # # Time constraint
    # for i in range(nb_phases):
    #     constraints.add(Constraint.TIME_CONSTRAINT, phase=i, minimum=time_min[i], maximum=time_max[i])

    # --- Path constraints --- #
    if use_symmetry:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [0, 0, -0.5336, 1.4, 0.8, -0.9, 0.47]
    else:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [
            0, 0, -0.5336, 0, 1.4, 0, 1.4, 0.8, -0.9, 0.47, 0.8, -0.9, 0.47
        ]

    # Initialize x_bounds (Interpolation type is CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT)
    x_bounds = BoundsList()
    for i in range(nb_phases):
        x_bounds.add(
            QAndQDotBounds(biorbd_model[i],
                           all_generalized_mapping=q_mapping[i]))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # # Initial guess for states (Interpolation type is CONSTANT)
    # x_init = InitialConditionsList()
    # for i in range(nb_phases):
    #     x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Initial guess for states (Interpolation type is CONSTANT for 1st phase and SPLINE with 3 key positions for 2nd phase)
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node +
               [0] * nb_qdot)  # x_init phase 0 type CONSTANT
    t_spline = np.hstack((0, 0.34, phase_time[1]))
    p0 = np.array([pose_at_first_node + [0] * nb_qdot]).T
    p_flex = np.array(
        [[-0.12, -0.23, -1.10, 1.85, 2.06, -1.67, 0.55, 0, 0, 0, 0, 0, 0,
          0]]).T
    p_end = p0
    key_positions = np.hstack((p0, p_flex, p_end))
    x_init.add(
        key_positions, t=t_spline,
        interpolation=InterpolationType.SPLINE)  # x_init phase 1 type SPLINE

    # Define control path constraint
    u_bounds = BoundsList()
    for tau_m in tau_mapping:
        u_bounds.add(
            [[tau_min] * tau_m.reduce.len, [tau_max] * tau_m.reduce.len],
            interpolation=InterpolationType.CONSTANT
        )  # This precision of the CONSTANT type is for informative purposes only

    u_init = InitialConditionsList()
    for tau_m in tau_mapping:
        u_init.add(
            [tau_init] *
            tau_m.reduce.len)  # Interpolation type is CONSTANT (default value)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        q_mapping=q_mapping,
        q_dot_mapping=q_mapping,
        tau_mapping=tau_mapping,
        nb_threads=2,
    )
def prepare_ocp(model_path, phase_time, number_shooting_points, direction,
                boundary):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ({
        "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
        "weight": -1
    }, )

    # Dynamics
    problem_type = ProblemType.muscle_excitations_and_torque_driven_with_contact

    # Constraints
    constraints = (
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": direction,
            "instant": Instant.ALL,
            "contact_force_idx": 1,
            "boundary": boundary,
        },
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": direction,
            "instant": Instant.ALL,
            "contact_force_idx": 2,
            "boundary": boundary,
        },
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    nb_mus = biorbd_model.nbMuscleTotal()
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.concatenate(
        Bounds([activation_min] * nb_mus, [activation_max] * nb_mus))
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus

    # Initial guess
    X_init = [
        InitialConditions(pose_at_first_node + [0] * nb_qdot + [0.5] * nb_mus)
    ]

    # Define control path constraint
    U_bounds = [
        Bounds(
            min_bound=[torque_min] * tau_mapping.reduce.len +
            [activation_min] * biorbd_model.nbMuscleTotal(),
            max_bound=[torque_max] * tau_mapping.reduce.len +
            [activation_max] * biorbd_model.nbMuscleTotal(),
        )
    ]

    U_init = [
        InitialConditions([torque_init] * tau_mapping.reduce.len +
                          [activation_init] * biorbd_model.nbMuscleTotal())
    ]
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
        tau_mapping=tau_mapping,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0
    all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]),
                                                   Mapping([0, 1, 2]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model, all_generalized_mapping))
    x_bounds[0].min[3:6, [0, -1]] = 0
    x_bounds[0].max[3:6, [0, -1]] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * all_generalized_mapping.reduce.len * 2)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * all_generalized_mapping.reduce.len,
                  [tau_max] * all_generalized_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * all_generalized_mapping.reduce.len)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        all_generalized_mapping=all_generalized_mapping,
    )
def prepare_ocp(model_path, phase_time, number_shooting_points, mu):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    torque_min, torque_max, torque_init = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ({"type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT, "weight": -1},)

    # Dynamics
    problem_type = ProblemType.torque_driven_with_contact

    # Constraints
    constraints = (
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": "GREATER_THAN",
            "instant": Instant.ALL,
            "contact_force_idx": 1,
            "boundary": 0,
        },
        {
            "type": Constraint.CONTACT_FORCE_INEQUALITY,
            "direction": "GREATER_THAN",
            "instant": Instant.ALL,
            "contact_force_idx": 2,
            "boundary": 0,
        },
        {
            "type": Constraint.NON_SLIPPING,
            "instant": Instant.ALL,
            "normal_component_idx": (1, 2),
            "tangential_component_idx": 0,
            "static_friction_coefficient": mu,
        },
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    X_bounds = QAndQDotBounds(biorbd_model)
    X_bounds.min[:, 0] = pose_at_first_node + [0] * nb_qdot
    X_bounds.max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = InitialConditions(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    U_bounds = Bounds(min_bound=[torque_min] * tau_mapping.reduce.len, max_bound=[torque_max] * tau_mapping.reduce.len)

    U_init = InitialConditions([torque_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
def prepare_ocp(
    show_online_optim=False,
    use_symmetry=True,
):
    # --- Options --- #
    # Model path
    biorbd_model = (
        biorbd.Model("jumper2contacts.bioMod"),
        biorbd.Model("jumper1contacts.bioMod"),
    )
    nb_phases = len(biorbd_model)
    torque_min, torque_max, torque_init = -1000, 1000, 0

    # Problem parameters
    number_shooting_points = [8, 8]
    phase_time = [0.4, 0.2]

    if use_symmetry:
        q_mapping = BidirectionalMapping(
            Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]),
            Mapping([0, 1, 2, 4, 7, 8, 9]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = BidirectionalMapping(
            Mapping([-1, -1, -1, -1, 0, -1, 0, 1, 2, 3, 1, 2, 3], [5]),
            Mapping([4, 7, 8, 9]))
        tau_mapping = tau_mapping, tau_mapping

    else:
        q_mapping = BidirectionalMapping(
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
        )
        q_mapping = q_mapping, q_mapping
        tau_mapping = q_mapping

    # Add objective functions
    objective_functions = (
        (),
        (
            {
                "type": Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                "weight": -1
            },
            {
                "type": Objective.Lagrange.MINIMIZE_ALL_CONTROLS,
                "weight": 1 / 100
            },
        ),
    )

    # Dynamics
    problem_type = (
        ProblemType.torque_driven_with_contact,
        ProblemType.torque_driven_with_contact,
    )

    constraints_first_phase = []
    constraints_second_phase = []

    contact_axes = (1, 2, 4, 5)
    for i in contact_axes:
        constraints_first_phase.append({
            "type": Constraint.CONTACT_FORCE_GREATER_THAN,
            "instant": Instant.ALL,
            "idx": i,
            "boundary": 0,
        })
    contact_axes = (1, 3)
    for i in contact_axes:
        constraints_second_phase.append({
            "type": Constraint.CONTACT_FORCE_GREATER_THAN,
            "instant": Instant.ALL,
            "idx": i,
            "boundary": 0,
        })
    constraints_first_phase.append({
        "type": Constraint.NON_SLIPPING,
        "instant": Instant.ALL,
        "normal_component_idx": (1, 2, 4, 5),
        "tangential_component_idx": (0, 3),
        "static_friction_coefficient": 0.5,
    })
    constraints_second_phase.append({
        "type": Constraint.NON_SLIPPING,
        "instant": Instant.ALL,
        "normal_component_idx": (1, 3),
        "tangential_component_idx": (0, 2),
        "static_friction_coefficient": 0.5,
    })
    if not use_symmetry:
        first_dof = (3, 4, 7, 8, 9)
        second_dof = (5, 6, 10, 11, 12)
        coeff = (-1, 1, 1, 1, 1)
        for i in range(len(first_dof)):
            constraints_first_phase.append({
                "type": Constraint.PROPORTIONAL_STATE,
                "instant": Instant.ALL,
                "first_dof": first_dof[i],
                "second_dof": second_dof[i],
                "coef": coeff[i],
            })

        for i in range(len(first_dof)):
            constraints_second_phase.append({
                "type": Constraint.PROPORTIONAL_STATE,
                "instant": Instant.ALL,
                "first_dof": first_dof[i],
                "second_dof": second_dof[i],
                "coef": coeff[i],
            })
    constraints = (constraints_first_phase, constraints_second_phase)

    # Path constraint
    if use_symmetry:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [0, 0, -0.5336, 1.4, 0.8, -0.9, 0.47]
    else:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [
            0,
            0,
            -0.5336,
            0,
            1.4,
            0,
            1.4,
            0.8,
            -0.9,
            0.47,
            0.8,
            -0.9,
            0.47,
        ]

    # Initialize X_bounds
    X_bounds = [
        QAndQDotBounds(biorbd_model[i], all_generalized_mapping=q_mapping[i])
        for i in range(nb_phases)
    ]
    X_bounds[0].first_node_min = pose_at_first_node + [0] * nb_qdot
    X_bounds[0].first_node_max = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    X_init = [
        InitialConditions(pose_at_first_node + [0] * nb_qdot),
        InitialConditions(pose_at_first_node + [0] * nb_qdot),
    ]

    # Define control path constraint
    U_bounds = [
        Bounds(min_bound=[torque_min] * tau_m.reduce.len,
               max_bound=[torque_max] * tau_m.reduce.len)
        for tau_m in tau_mapping
    ]

    U_init = [
        InitialConditions([torque_init] * tau_m.reduce.len)
        for tau_m in tau_mapping
    ]
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        problem_type,
        number_shooting_points,
        phase_time,
        objective_functions,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        constraints,
        q_mapping=q_mapping,
        q_dot_mapping=q_mapping,
        tau_mapping=tau_mapping,
        show_online_optim=show_online_optim,
    )
def generate_data(biorbd_model,
                  final_time,
                  nb_shooting,
                  use_residual_torque=True):
    # Aliases
    nb_q = biorbd_model.nbQ()
    nb_qdot = biorbd_model.nbQdot()
    nb_tau = biorbd_model.nbGeneralizedTorque()
    nb_mus = biorbd_model.nbMuscleTotal()
    nb_markers = biorbd_model.nbMarkers()
    dt = final_time / nb_shooting

    if use_residual_torque:
        nu = nb_tau + nb_mus
    else:
        nu = nb_mus

    # Casadi related stuff
    symbolic_states = MX.sym("x", nb_q + nb_qdot, 1)
    symbolic_controls = MX.sym("u", nu, 1)
    symbolic_parameters = MX.sym("params", 0, 0)

    markers_func = []
    for i in range(nb_markers):
        markers_func.append(
            Function(
                "ForwardKin",
                [symbolic_states],
                [biorbd_model.marker(symbolic_states[:nb_q], i).to_mx()],
                ["q"],
                ["marker_" + str(i)],
            ).expand())

    nlp = {
        "model":
        biorbd_model,
        "nbMuscle":
        nb_mus,
        "q_mapping":
        BidirectionalMapping(Mapping(range(nb_q)), Mapping(range(nb_q))),
        "q_dot_mapping":
        BidirectionalMapping(Mapping(range(nb_qdot)), Mapping(range(nb_qdot))),
        "parameters_to_optimize": {},
    }
    if use_residual_torque:
        nlp["nbTau"] = nb_tau
        nlp["tau_mapping"] = BidirectionalMapping(Mapping(range(nb_tau)),
                                                  Mapping(range(nb_tau)))
        dyn_func = DynamicsFunctions.forward_dynamics_torque_muscle_driven
    else:
        dyn_func = DynamicsFunctions.forward_dynamics_muscle_activations_driven

    dynamics_func = Function(
        "ForwardDyn",
        [symbolic_states, symbolic_controls, symbolic_parameters],
        [
            dyn_func(symbolic_states, symbolic_controls, symbolic_parameters,
                     nlp)
        ],
        ["x", "u", "p"],
        ["xdot"],
    ).expand()

    def dyn_interface(t, x, u):
        if use_residual_torque:
            u = np.concatenate([np.zeros(nb_tau), u])
        return np.array(dynamics_func(x, u, np.empty((0, 0)))).squeeze()

    # Generate some muscle activation
    U = np.random.rand(nb_shooting, nb_mus).T

    # Integrate and collect the position of the markers accordingly
    X = np.ndarray((nb_q + nb_qdot, nb_shooting + 1))
    markers = np.ndarray((3, biorbd_model.nbMarkers(), nb_shooting + 1))

    def add_to_data(i, q):
        X[:, i] = q
        for j, mark_func in enumerate(markers_func):
            markers[:, j, i] = np.array(mark_func(q)).squeeze()

    x_init = np.array([0] * nb_q + [0] * nb_qdot)
    add_to_data(0, x_init)
    for i, u in enumerate(U.T):
        sol = solve_ivp(dyn_interface, (0, dt),
                        x_init,
                        method="RK45",
                        args=(u, ))

        x_init = sol["y"][:, -1]
        add_to_data(i + 1, x_init)

    time_interp = np.linspace(0, final_time, nb_shooting + 1)
    return time_interp, markers, X, U