Exemple #1
0
def test_mayer_neg_two_objectives():
    (
        biorbd_model,
        number_shooting_points,
        final_time,
        time_min,
        time_max,
        torque_min,
        torque_max,
        torque_init,
        dynamics,
        x_bounds,
        x_init,
        u_bounds,
        u_init,
    ) = partial_ocp_parameters(nb_phases=1)

    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_TIME, phase=0)
    objective_functions.add(Objective.Mayer.MINIMIZE_TIME, phase=0)

    with pytest.raises(
            RuntimeError,
            match="Time constraint/objective cannot declare more than once"):
        OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
        )
def prepare_ocp(model_path, phase_time, number_shooting_points,
                muscle_activations_ref, contact_forces_ref):
    # Model path
    biorbd_model = biorbd.Model(model_path)
    tau_min, tau_max, tau_init = -500, 500, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            target=muscle_activations_ref)
    objective_functions.add(Objective.Lagrange.TRACK_CONTACT_FORCES,
                            target=contact_forces_ref)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(
        DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN_WITH_CONTACT)

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [activation_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [activation_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [activation_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions=objective_functions,
    )
Exemple #3
0
def prepare_ocp(biorbd_model, final_time, number_shooting_points, markers_ref,
                tau_ref):
    # --- Options --- #
    tau_min, tau_max, tau_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                            axis_tot_track=[Axe.Y, Axe.Z],
                            weight=100,
                            target=markers_ref)
    objective_functions.add(Objective.Lagrange.TRACK_TORQUE, target=tau_ref)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = 0
    x_bounds[0].max[:, 0] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )
Exemple #4
0
def test_lagrange2_neg_multiphase_time_constraint():
    with pytest.raises(
            RuntimeError,
            match="Time constraint/objective cannot declare more than once"):
        (
            biorbd_model,
            number_shooting_points,
            final_time,
            time_min,
            time_max,
            torque_min,
            torque_max,
            torque_init,
            dynamics,
            x_bounds,
            x_init,
            u_bounds,
            u_init,
        ) = partial_ocp_parameters(nb_phases=3)

        objective_functions = ObjectiveList()
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                                weight=100,
                                phase=2)
        objective_functions.add(Objective.Lagrange.MINIMIZE_TIME, phase=2)

        constraints = ConstraintList()
        constraints.add(Constraint.ALIGN_MARKERS,
                        instant=Instant.START,
                        first_marker_idx=0,
                        second_marker_idx=1,
                        phase=2)
        constraints.add(Constraint.TIME_CONSTRAINT,
                        instant=Instant.END,
                        minimum=time_min[0],
                        maximum=time_max[0],
                        phase=2)

        OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            constraints,
        )
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_TIME)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, [0, -1]] = 0
    x_bounds[0].max[:, [0, -1]] = 0
    x_bounds[0].min[n_q - 1, -1] = 3.14
    x_bounds[0].max[n_q - 1, -1] = 3.14

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * n_tau, [tau_max] * n_tau])
    u_bounds[0].min[n_tau - 1, :] = 0
    u_bounds[0].max[n_tau - 1, :] = 0

    u_init = InitialConditionsList()
    u_init.add([tau_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )
Exemple #6
0
def prepare_ocp(biorbd_model_path,
                final_time,
                number_shooting_points,
                use_SX=False):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -1, 1, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL)
    objective_functions.add(Objective.Mayer.ALIGN_MARKERS,
                            first_marker_idx=0,
                            second_marker_idx=5)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = (0.07, 1.4, 0, 0)
    x_bounds[0].max[:, 0] = (0.07, 1.4, 0, 0)

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([1.57] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [muscle_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        use_SX=use_SX,
    )
Exemple #7
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points, nb_threads, use_SX=False):
    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    torque_min, torque_max, torque_init = -100, 100, 0
    n_q = biorbd_model.nbQ()
    n_qdot = biorbd_model.nbQdot()
    n_tau = biorbd_model.nbGeneralizedTorque()
    data_to_track = np.zeros((number_shooting_points + 1, n_q + n_qdot))
    data_to_track[:, 1] = 3.14
    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100.0)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=1.0)
    objective_functions.add(
        Objective.Mayer.MINIMIZE_STATE, weight=50000.0, target=data_to_track.T, instant=Instant.END,
    )

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = 0
    x_bounds[0].max[:, 0] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (n_q + n_qdot))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add(
        [[torque_min] * n_tau, [torque_max] * n_tau,]
    )
    u_bounds[0].min[n_tau - 1, :] = 0
    u_bounds[0].max[n_tau - 1, :] = 0

    u_init = InitialConditionsList()
    u_init.add([torque_init] * n_tau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
    )
Exemple #8
0
def prepare_ocp(biorbd_model_path="cube_with_forces.bioMod", ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.START, first_marker_idx=0, second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2)

    # External forces
    external_forces = [
        np.repeat(
            np.array([[0, 0, 0, 0, 0, -2], [0, 0, 0, 0, 0, 5]]).T[:, :, np.newaxis], number_shooting_points, axis=2
        )
    ]

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[3:6, [0, -1]] = 0
    x_bounds[0].max[3:6, [0, -1]] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(), [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions=objective_functions,
        constraints=constraints,
        external_forces=external_forces,
        ode_solver=ode_solver,
    )
def prepare_ocp(biorbd_model_path="cube.bioMod",
                ode_solver=OdeSolver.RK,
                long_optim=False):
    # --- Options --- #
    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path),
                    biorbd.Model(biorbd_model_path))

    # Problem parameters
    if long_optim:
        number_shooting_points = (100, 300, 100)
    else:
        number_shooting_points = (20, 30, 20)
    final_time = (2, 5, 4)
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=0)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=2)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)
    dynamics.add(DynamicsType.TORQUE_DRIVEN)
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1,
                    phase=0)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2,
                    phase=0)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=1,
                    phase=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2,
                    phase=2)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))

    for bounds in x_bounds:
        for i in [1, 3, 4, 5]:
            bounds.min[i, [0, -1]] = 0
            bounds.max[i, [0, -1]] = 0
    x_bounds[0].min[2, 0] = 0.0
    x_bounds[0].max[2, 0] = 0.0
    x_bounds[2].min[2, [0, -1]] = [0.0, 1.57]
    x_bounds[2].max[2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Exemple #10
0
def prepare_ocp(biorbd_model_path="HandSpinner.bioMod"):
    end_crank_idx = 0
    hand_marker_idx = 18

    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -100, 100, 0
    muscle_min, muscle_max, muscle_init = 0, 1, 0.5

    # Problem parameters
    number_shooting_points = 30
    final_time = 1.0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
                            markers_idx=hand_marker_idx)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    first_marker_idx=hand_marker_idx,
                    second_marker_idx=end_crank_idx,
                    instant=Instant.ALL)
    constraints.add(
        Constraint.TRACK_STATE,
        instant=Instant.ALL,
        states_idx=0,
        target=np.linspace(0, 2 * np.pi, number_shooting_points + 1),
    )

    state_transitions = StateTransitionList()
    state_transitions.add(state_transition_function, phase_pre_idx=0)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0, -0.9, 1.7, 0.9, 2.0, -1.3] + [0] * biorbd_model.nbQdot())

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_min] * biorbd_model.nbMuscleTotal(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_max] * biorbd_model.nbMuscleTotal(),
    ])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [muscle_init] * biorbd_model.nbMuscleTotal())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        state_transitions=state_transitions,
    )
Exemple #11
0
def prepare_ocp(
    biorbd_model,
    final_time,
    number_shooting_points,
    marker_ref,
    excitations_ref,
    q_ref,
    state_ekf,
    use_residual_torque,
    kin_data_to_track,
    nb_threads,
    use_SX=True,
):

    # --- Options --- #
    nb_mus = biorbd_model.nbMuscleTotal()
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.1
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()

    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            weight=0.001,
                            target=excitations_ref)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=10)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                                weight=1,
                                target=marker_ref)

    elif kin_data_to_track == "q":
        objective_functions.add(Objective.Lagrange.TRACK_STATE,
                                weight=100,
                                target=q_ref,
                                states_idx=range(biorbd_model.nbQ()))
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Add muscle to the bounds
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))

    x_bounds[0].min[:, 0] = 0  # state_ekf[:, 0]
    x_bounds[0].max[:, 0] = 0  # state_ekf[:, 0]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) +
               [0] * biorbd_model.nbMuscles())
    # x_init.add(state_ekf, interpolation=InterpolationType.EACH_FRAME)

    # Add muscle to the bounds
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    init_residual_torque = np.concatenate((np.ones(
        (biorbd_model.nbGeneralizedTorque(), n_shooting_points)) * 0.5,
                                           excitations_ref))
    if use_residual_torque:
        u_bounds.add([
            [torque_min] * biorbd_model.nbGeneralizedTorque() +
            [excitation_min] * biorbd_model.nbMuscleTotal(),
            [torque_max] * biorbd_model.nbGeneralizedTorque() +
            [excitation_max] * biorbd_model.nbMuscleTotal(),
        ])
        # u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal())
        u_init.add(init_residual_torque,
                   interpolation=InterpolationType.EACH_FRAME)
    else:
        u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                      [excitation_max] * biorbd_model.nbMuscleTotal()])
        u_init.add([0] * biorbd_model.nbMuscleTotal())
        # u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)

    # Get initial isometric forces
    fiso = []
    for k in range(nb_mus):
        fiso.append(
            biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

    # Define the parameter to optimize
    bound_p_iso = Bounds(min_bound=np.repeat(0.5, nb_mus + 1),
                         max_bound=np.repeat(3.5, nb_mus + 1),
                         interpolation=InterpolationType.CONSTANT)
    bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                max_bound=np.repeat(0, nb_mus),
                                interpolation=InterpolationType.CONSTANT)

    p_iso_init = InitialConditions(np.repeat(1, nb_mus + 1))
    initial_guess_A = InitialConditions([-3] * nb_mus)

    parameters = ParameterList()
    parameters.add(
        "p_iso",  # The name of the parameter
        modify_isometric_force,  # The function that modifies the biorbd model
        p_iso_init,
        bound_p_iso,  # The bounds
        size=nb_mus +
        1,  # The number of elements this particular parameter vector has
        fiso_init=fiso,
    )
    # parameters.add(
    #         "shape_factor",  # The name of the parameter
    #         modify_shape_factor,
    #         initial_guess_A,
    #         bound_shape_factor,  # The bounds
    #         size=nb_mus,  # The number of elements this particular parameter vector has
    # )

    # ------------- #
    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
        # parameters=parameters,
    )
def prepare_ocp(biorbd_model_path,
                final_time,
                number_shooting_points,
                use_SX=False,
                nb_threads=1):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    tau_min, tau_max, tau_init = -5, 5, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    excitation_min, excitation_max, excitation_init = 0, 1, 0.5

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=100)
    objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL,
                            weight=10)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_AND_TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Add muscle to the bounds
    x_bounds[0].concatenate(
        Bounds([activation_min] * biorbd_model.nbMuscles(),
               [activation_max] * biorbd_model.nbMuscles()))

    # Following values are taken from Belaise's matlab code
    x_bounds[0].min[:,
                    0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15,
                          -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles()
    x_bounds[0].max[:,
                    0] = (-0.2, 0.1, -0.25, 0.1, 0, -0, -0.2, 0.05, -0.15,
                          -0.02, 0, 0.28) + (0, ) * biorbd_model.nbMuscles()
    x_bounds[0].min[:biorbd_model.nbQ() * 2,
                    -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17,
                           -0.62, 1.4, -0.57)
    x_bounds[0].max[:biorbd_model.nbQ() * 2,
                    -1] = (-0.03, 0.1, -0.1, 0.2, -0.76, 1., 2., -1.5, -0.17,
                           -0.62, 1.4, -0.57)

    # Initial guess

    x_init = InitialConditionsList()
    x_init.add([1.] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot() +
               [0] * biorbd_model.nbMuscles())

    # Define control path constraint
    u_bounds = BoundsList()
    u_init = InitialConditionsList()

    u_bounds.add([
        [tau_min] * biorbd_model.nbGeneralizedTorque() +
        [excitation_min] * biorbd_model.nbMuscles(),
        [tau_max] * biorbd_model.nbGeneralizedTorque() +
        [excitation_max] * biorbd_model.nbMuscles(),
    ])
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
               [excitation_init] * biorbd_model.nbMuscles())
    # ------------- #

    return OptimalControlProgram(biorbd_model,
                                 dynamics,
                                 number_shooting_points,
                                 final_time,
                                 x_init,
                                 u_init,
                                 x_bounds,
                                 u_bounds,
                                 objective_functions,
                                 use_SX=use_SX,
                                 nb_threads=nb_threads)
def prepare_ocp(
    biorbd_model,
    final_time,
    nb_shooting,
    markers_ref,
    activations_ref,
    q_ref,
    kin_data_to_track="markers",
    use_residual_torque=True,
    use_SX=False,
):
    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0
    activation_min, activation_max, activation_init = 0, 1, 0.5
    nq = biorbd_model.nbQ()

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                            target=activations_ref)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS,
                                weight=100,
                                target=markers_ref)
    elif kin_data_to_track == "q":
        objective_functions.add(Objective.Lagrange.TRACK_STATE,
                                weight=100,
                                target=q_ref,
                                states_idx=range(biorbd_model.nbQ()))
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    # Due to unpredictable movement of the forward dynamics that generated the movement, the bound must be larger
    x_bounds[0].min[:nq, :] = -2 * np.pi
    x_bounds[0].max[:nq, :] = 2 * np.pi

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    if use_residual_torque:
        u_bounds.add([
            [tau_min] * biorbd_model.nbGeneralizedTorque() +
            [activation_min] * biorbd_model.nbMuscleTotal(),
            [tau_max] * biorbd_model.nbGeneralizedTorque() +
            [activation_max] * biorbd_model.nbMuscleTotal(),
        ])
        u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque() +
                   [activation_init] * biorbd_model.nbMuscleTotal())
    else:
        u_bounds.add([[activation_min] * biorbd_model.nbMuscleTotal(),
                      [activation_max] * biorbd_model.nbMuscleTotal()])
        u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        nb_shooting,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        use_SX=use_SX,
    )
def prepare_ocp(model_path,
                phase_time,
                number_shooting_points,
                use_actuators=False):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)

    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -500, 500, 0

    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1 / 100)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.5, 0.5]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * tau_mapping.reduce.len,
                  [tau_max] * tau_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        tau_mapping=tau_mapping,
    )
Exemple #15
0
def prepare_nlp(biorbd_model_path="../models/Bras.bioMod"):
    """
    Mix .bioMod and users data to call OptimalControlProgram constructor.
    :param biorbd_model_path: path to the .bioMod file.
    :param show_online_optim: bool which active live plot function.
    :return: OptimalControlProgram object.
    """

    # --- Options --- #
    biorbd_model = biorbd.Model(biorbd_model_path)
    muscle_activated_init, muscle_fatigued_init, muscle_resting_init = 0, 0, 1
    torque_min, torque_max, torque_init = -10, 10, 0
    muscle_states_ratio_min, muscle_states_ratio_max = 0, 1
    number_shooting_points = 30
    final_time = 0.5

    # --- Objective --- #
    objective_functions = ObjectiveList()
    # objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, weight=10)
    # objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE_DERIVATIVE,
                            weight=100)
    # objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, controls_idx=[0, 1, 2, 3], weight=2000)

    # --- Dynamics --- #
    dynamics = DynamicsTypeOption(xia.xia_model_configuration,
                                  dynamic_function=xia.xia_model_dynamic)

    # --- Path constraints --- #
    X_bounds = BoundsOption(QAndQDotBounds(biorbd_model))

    X_bounds[biorbd_model.nbQ():, 0] = 0
    X_bounds[biorbd_model.nbQ():, 2] = -1.5

    muscle_states_bounds = BoundsOption([
        [muscle_states_ratio_min] * biorbd_model.nbMuscleTotal() * 3,
        [muscle_states_ratio_max] * biorbd_model.nbMuscleTotal() * 3,
    ])
    muscle_states_bounds.min[:, 0] = (
        [muscle_activated_init] * biorbd_model.nbMuscleTotal() +
        [muscle_fatigued_init] * biorbd_model.nbMuscleTotal() +
        [muscle_resting_init] * biorbd_model.nbMuscleTotal())
    muscle_states_bounds.max[:, 0] = (
        [muscle_activated_init] * biorbd_model.nbMuscleTotal() +
        [muscle_fatigued_init] * biorbd_model.nbMuscleTotal() +
        [muscle_resting_init] * biorbd_model.nbMuscleTotal())

    X_bounds.bounds.concatenate(muscle_states_bounds.bounds)

    U_bounds = BoundsOption([
        [torque_min] * biorbd_model.nbGeneralizedTorque() +
        [muscle_states_ratio_min] * biorbd_model.nbMuscleTotal(),
        [torque_max] * biorbd_model.nbGeneralizedTorque() +
        [muscle_states_ratio_max] * biorbd_model.nbMuscleTotal(),
    ])

    # --- Initial guess --- #
    X_init = InitialConditionsOption(
        [0] * biorbd_model.nbQ() + [0] * biorbd_model.nbQdot(),
        InterpolationType.CONSTANT,
    )
    U_init = InitialConditionsOption(
        [torque_init] * biorbd_model.nbGeneralizedTorque() +
        [muscle_activated_init] * biorbd_model.nbMuscleTotal(),
        InterpolationType.CONSTANT,
    )

    muscle_states_init = InitialConditionsOption(
        [muscle_activated_init] * biorbd_model.nbMuscleTotal() +
        [muscle_fatigued_init] * biorbd_model.nbMuscleTotal() +
        [muscle_resting_init] * biorbd_model.nbMuscleTotal(),
        InterpolationType.CONSTANT,
    )
    X_init.initial_condition.concatenate(muscle_states_init.initial_condition)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        X_init,
        U_init,
        X_bounds,
        U_bounds,
        objective_functions=objective_functions,
        nb_threads=4,
    )
Exemple #16
0
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2)
    constraints.add(Constraint.PROPORTIONAL_STATE,
                    instant=Instant.ALL,
                    first_dof=2,
                    second_dof=3,
                    coef=-1)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[4:8, [0, -1]] = 0
    x_bounds[0].max[4:8, [0, -1]] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbQ(),
                  [tau_max] * biorbd_model.nbQ()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbQ())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Exemple #17
0
    sol = ocp.solve(solver=Solver.ACADOS, solver_options=options_acados)
    data_sol = Data.get_data(ocp, sol)
    X0, U0, X_out = warm_start_mhe(data_sol)
    X_est[:, 0] = X_out
    t0 = time.time()

    # Reduce ipopt tol for moving estimation
    options_ipopt["max_iter"] = 5
    options_ipopt["tol"] = 1e-1

    # TODO: The following loop should be move in a MHE module that yields after iteration so the user can change obj
    for i in range(1, N - N_mhe):
        Y_i = Y_N_[:, :, i:i + N_mhe + 1]
        new_objectives = ObjectiveList()
        new_objectives.add(Objective.Lagrange.MINIMIZE_MARKERS,
                           weight=1000,
                           target=Y_i,
                           idx=0)
        new_objectives.add(Objective.Lagrange.MINIMIZE_STATE,
                           weight=1000,
                           target=X0,
                           phase=0,
                           idx=1)
        ocp.update_objectives(new_objectives)

        # sol = ocp.solve(solver_options=options_ipopt)
        sol = ocp.solve(solver=Solver.ACADOS, solver_options=options_acados)
        data_sol = Data.get_data(ocp, sol, concatenate=False)
        X0, U0, X_out = warm_start_mhe(data_sol)
        X_est[:, i] = X_out
    t1 = time.time()
    print(f"Window size of MHE : {Tf_mhe} s.")
    def prepare_ocp(biorbd_model,
                    final_time,
                    number_shooting_points,
                    marker_ref,
                    excitations_ref,
                    q_ref,
                    state_init,
                    use_residual_torque,
                    activation_driven,
                    kin_data_to_track,
                    nb_threads,
                    use_SX=True,
                    param=False):

        # --- Options --- #
        nb_mus = biorbd_model.nbMuscleTotal()
        activation_min, activation_max, activation_init = 0, 1, 0.3
        excitation_min, excitation_max, excitation_init = 0, 1, 0.1
        torque_min, torque_max, torque_init = -100, 100, 0

        # -- Force iso ipopt pour acados
        # if param is not True:
        #     fiso = []
        #     for k in range(nb_mus):
        #         fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())
        #     mat_content = sio.loadmat("./results/param_f_iso_flex.mat")
        #     f_iso = mat_content["f_iso"] * mat_content["f_iso_global"]
        #     for k in range(biorbd_model.nbMuscles()):
        #         biorbd_model.muscle(k).characteristics().setForceIsoMax(
        #             f_iso[k] * fiso[k]
        #         )

        # Add objective functions
        objective_functions = ObjectiveList()

        objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL,
                                weight=10,
                                target=excitations_ref)

        objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01)

        if use_residual_torque:
            objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                                    weight=1)

        if kin_data_to_track == "markers":
            objective_functions.add(
                Objective.Lagrange.TRACK_MARKERS,
                weight=1000,
                target=marker_ref[:, -biorbd_model.nbMarkers():, :])

        elif kin_data_to_track == "q":
            objective_functions.add(
                Objective.Lagrange.TRACK_STATE,
                weight=100,
                # target=q_ref,
                # states_idx=range(biorbd_model.nbQ())
            )
        else:
            raise RuntimeError("Wrong choice of kin_data_to_track")

        # Dynamics
        dynamics = DynamicsTypeList()
        if use_residual_torque:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
        elif activation_driven:
            dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)
        else:
            dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

        # Constraints
        constraints = ()

        # Path constraint
        x_bounds = BoundsList()
        x_bounds.add(QAndQDotBounds(biorbd_model))
        if use_SX:
            x_bounds[0].min[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))
            x_bounds[0].max[:, 0] = np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6,
                            0], state_init[biorbd_model.nbQ() + 12:-nb_mus,
                                           0]))

        # Add muscle to the bounds
        if activation_driven is not True:
            x_bounds[0].concatenate(
                Bounds([activation_min] * biorbd_model.nbMuscles(),
                       [activation_max] * biorbd_model.nbMuscles()))

        # Initial guess
        x_init = InitialConditionsList()
        if activation_driven:
            # state_base = np.ndarray((12, n_shooting_points+1))
            # for i in range(n_shooting_points+1):
            #     state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6))))
            x_init.add(np.concatenate(
                (state_init[6:biorbd_model.nbQ() + 6, :],
                 state_init[biorbd_model.nbQ() + 12:-nb_mus, :])),
                       interpolation=InterpolationType.EACH_FRAME)
            # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME)
        else:
            # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())
            x_init.add(state_init[biorbd_model.nbQ():, :],
                       interpolation=InterpolationType.EACH_FRAME)

        # Add muscle to the bounds
        u_bounds = BoundsList()
        u_init = InitialConditionsList()
        nb_tau = 6
        # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5,
        #                                        excitations_ref))
        if use_residual_torque:
            u_bounds.add([
                [torque_min] * biorbd_model.nbGeneralizedTorque() +
                [excitation_min] * biorbd_model.nbMuscleTotal(),
                [torque_max] * biorbd_model.nbGeneralizedTorque() +
                [excitation_max] * biorbd_model.nbMuscleTotal(),
            ])
            u_init.add([torque_init] * biorbd_model.nbGeneralizedTorque() +
                       [excitation_init] * biorbd_model.nbMuscleTotal())
            # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME)

        else:
            u_bounds.add([[excitation_min] * biorbd_model.nbMuscleTotal(),
                          [excitation_max] * biorbd_model.nbMuscleTotal()])
            if activation_driven:
                # u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)
            else:
                # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal())
                u_init.add(excitations_ref,
                           interpolation=InterpolationType.EACH_FRAME)

        # Get initial isometric forces
        fiso = []
        for k in range(nb_mus):
            fiso.append(
                biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())

        # Define the parameter to optimize
        bound_p_iso = Bounds(
            # min_bound=np.repeat(0.75, nb_mus), max_bound=np.repeat(3, nb_mus), interpolation=InterpolationType.CONSTANT)
            min_bound=[0.5] * nb_mus + [0.75],
            max_bound=[3.5] * nb_mus + [3],
            interpolation=InterpolationType.CONSTANT)
        bound_shape_factor = Bounds(min_bound=np.repeat(-3, nb_mus),
                                    max_bound=np.repeat(0, nb_mus),
                                    interpolation=InterpolationType.CONSTANT)

        p_iso_init = InitialConditions([1] * nb_mus + [2])
        initial_guess_A = InitialConditions([-3] * nb_mus)

        parameters = ParameterList()
        parameters.add(
            "p_iso",  # The name of the parameter
            modify_isometric_force,  # The function that modifies the biorbd model
            p_iso_init,
            bound_p_iso,  # The bounds
            size=nb_mus +
            1,  # The number of elements this particular parameter vector has
            fiso_init=fiso,
        )
        # parameters.add(
        #         "shape_factor",  # The name of the parameter
        #         modify_shape_factor,
        #         initial_guess_A,
        #         bound_shape_factor,  # The bounds
        #         size=nb_mus,  # The number of elements this particular parameter vector has
        # )

        # ------------- #
        return OptimalControlProgram(
            biorbd_model,
            dynamics,
            number_shooting_points,
            final_time,
            x_init,
            u_init,
            x_bounds,
            u_bounds,
            objective_functions,
            nb_threads=nb_threads,
            use_SX=use_SX,
            # parameters=parameters
        )
Exemple #19
0
def prepare_ocp(
    biorbd_model_path,
    number_shooting_points,
    final_time,
    max_torque,
    X0,
    U0,
    target=None,
    interpolation=InterpolationType.EACH_FRAME,
):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    nqdot = biorbd_model.nbQdot()
    ntau = biorbd_model.nbGeneralizedTorque()
    tau_min, tau_max, tau_init = -max_torque, max_torque, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_MARKERS,
                            weight=1000,
                            target=target)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE,
                            weight=1000,
                            target=X0)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = -np.inf
    x_bounds[0].max[:, 0] = np.inf
    # X_bounds[0].min[:biorbd_model.nbQ(), 0] = X0[:biorbd_model.nbQ(),0]
    # X_bounds[0].max[:biorbd_model.nbQ(), 0] = X0[:biorbd_model.nbQ(),0]

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min, 0.0], [tau_max, 0.0]])

    # Initial guesses
    x = X0
    u = U0
    x_init = InitialConditionsList()
    x_init.add(x, interpolation=interpolation)

    u_init = InitialConditionsList()
    u_init.add(u, interpolation=interpolation)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=4,
        use_SX=True,
    )
Exemple #20
0
def prepare_ocp(biorbd_model_path,
                number_shooting_points,
                final_time,
                use_actuators=False,
                ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[3:6, [0, -1]] = 0
    x_bounds[0].max[3:6, [0, -1]] = 0
    x_bounds[0].min[2, [0, -1]] = [0, 1.57]
    x_bounds[0].max[2, [0, -1]] = [0, 1.57]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                  [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
def prepare_ocp(
    biorbd_model_path,
    final_time,
    number_shooting_points,
    marker_velocity_or_displacement,
    marker_in_first_coordinates_system,
    control_type,
):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    biorbd_model.markerNames()
    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    if marker_in_first_coordinates_system:
        coordinates_system_idx = 0
    else:
        coordinates_system_idx = -1

    objective_functions = ObjectiveList()
    if marker_velocity_or_displacement == "disp":
        objective_functions.add(
            Objective.Lagrange.MINIMIZE_MARKERS_DISPLACEMENT,
            coordinates_system_idx=coordinates_system_idx,
            markers_idx=6,
            weight=1000,
        )
    elif marker_velocity_or_displacement == "velo":
        objective_functions.add(Objective.Lagrange.MINIMIZE_MARKERS_VELOCITY,
                                markers_idx=6,
                                weight=1000)
    else:
        raise RuntimeError(
            "Wrong choice of marker_velocity_or_displacement, actual value is "
            "{marker_velocity_or_displacement}, should be 'velo' or 'disp'.")
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE,
                            states_idx=6,
                            weight=-1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE,
                            states_idx=7,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    for i in range(nq, 2 * nq):
        x_bounds[0].min[i, :] = -10
        x_bounds[0].max[i, :] = 10

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([1.5, 1.5, 0.0, 0.0, 0.7, 0.7, 0.6, 0.6])

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                  [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_integration_steps=5,
        control_type=control_type,
    )
Exemple #22
0
def prepare_ocp(biorbd_model_path, final_time, number_shooting_points,
                initialize_near_solution):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=4)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=5)
    constraints.add(Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS,
                    instant=Instant.ALL,
                    marker_idx=1,
                    segment_idx=2,
                    axis=(Axe.X))

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    for i in range(1, 8):
        if i != 3:
            x_bounds[0].min[i, [0, -1]] = 0
            x_bounds[0].max[i, [0, -1]] = 0
    x_bounds[0].min[2, -1] = 1.57
    x_bounds[0].max[2, -1] = 1.57

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()))
    if initialize_near_solution:
        for i in range(2):
            x_init[0].init[i] = 1.5
        for i in range(4, 6):
            x_init[0].init[i] = 0.7
        for i in range(6, 8):
            x_init[0].init[i] = 0.6

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model.nbGeneralizedTorque(),
                  [tau_max] * biorbd_model.nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model.nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
    )
def prepare_ocp(biorbd_model_path, number_shooting_points, final_time):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)
    nq = biorbd_model.nbQ()
    nqdot = biorbd_model.nbQdot()
    ntau = nqdot  # biorbd_model.nbGeneralizedTorque()
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_MARKERS,
                            markers_idx=1,
                            weight=-1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * ntau, [tau_max] * ntau])

    # Initial guesses
    x = np.vstack((np.zeros(
        (biorbd_model.nbQ(), 2)), np.ones((biorbd_model.nbQdot(), 2))))
    Arm_init_D = np.zeros((3, 2))
    Arm_init_D[1, 0] = 0
    Arm_init_D[1, 1] = -np.pi + 0.01
    Arm_init_G = np.zeros((3, 2))
    Arm_init_G[1, 0] = 0
    Arm_init_G[1, 1] = np.pi - 0.01
    for i in range(2):
        Arm_Quat_D = eul2quat(Arm_init_D[:, i])
        Arm_Quat_G = eul2quat(Arm_init_G[:, i])
        x[6:9, i] = Arm_Quat_D[1:]
        x[12, i] = Arm_Quat_D[0]
        x[9:12, i] = Arm_Quat_G[1:]
        x[13, i] = Arm_Quat_G[0]
    x_init = InitialConditionsList()
    x_init.add(x, interpolation=InterpolationType.LINEAR)

    u_init = InitialConditionsList()
    u_init.add([tau_init] * ntau)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
    )
def prepare_ocp(biorbd_model_path="cubeSym.bioMod", ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(biorbd_model_path)

    # Problem parameters
    number_shooting_points = 30
    final_time = 2
    tau_min, tau_max, tau_init = -100, 100, 0
    all_generalized_mapping = BidirectionalMapping(Mapping([0, 1, 2, 2], [3]),
                                                   Mapping([0, 1, 2]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model, all_generalized_mapping))
    x_bounds[0].min[3:6, [0, -1]] = 0
    x_bounds[0].max[3:6, [0, -1]] = 0

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * all_generalized_mapping.reduce.len * 2)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * all_generalized_mapping.reduce.len,
                  [tau_max] * all_generalized_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * all_generalized_mapping.reduce.len)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        all_generalized_mapping=all_generalized_mapping,
    )
Exemple #25
0
def prepare_ocp(
        biorbd_model,
        final_time,
        number_shooting_points,
        marker_ref,
        excitations_ref,
        q_ref,
        state_init,
        use_residual_torque,
        activation_driven,
        kin_data_to_track,
        nb_threads,
        use_SX=True,
        ):

    # --- Options --- #
    nb_mus = biorbd_model.nbMuscleTotal()
    activation_min, activation_max, activation_init = 0, 1, 0.3
    excitation_min, excitation_max, excitation_init = 0, 1, 0.1
    torque_min, torque_max, torque_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()

    objective_functions.add(Objective.Lagrange.TRACK_MUSCLES_CONTROL, weight=10, target=excitations_ref)

    objective_functions.add(Objective.Lagrange.MINIMIZE_STATE, weight=0.01)

    if use_residual_torque:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1)

    if kin_data_to_track == "markers":
        objective_functions.add(Objective.Lagrange.TRACK_MARKERS, weight=1000,
                                target=marker_ref[:, -biorbd_model.nbMarkers():, :]
                                )

    elif kin_data_to_track == "q":
        objective_functions.add(
            Objective.Lagrange.TRACK_STATE, weight=100,
            # target=q_ref,
            # states_idx=range(biorbd_model.nbQ())
        )
    else:
        raise RuntimeError("Wrong choice of kin_data_to_track")

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_residual_torque:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_AND_TORQUE_DRIVEN)
    elif activation_driven:
        dynamics.add(DynamicsType.MUSCLE_ACTIVATIONS_DRIVEN)
    else:
        dynamics.add(DynamicsType.MUSCLE_EXCITATIONS_DRIVEN)

    # Constraints
    constraints = ()

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    if use_SX:
        x_bounds[0].min[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0],
                                                state_init[biorbd_model.nbQ() + 12:-nb_mus, 0]))
        x_bounds[0].max[:, 0] = np.concatenate((state_init[6:biorbd_model.nbQ() + 6, 0],
                                                state_init[biorbd_model.nbQ() + 12:-nb_mus, 0]))

    # Add muscle to the bounds
    if activation_driven is not True:
        x_bounds[0].concatenate(
            Bounds([activation_min] * biorbd_model.nbMuscles(), [activation_max] * biorbd_model.nbMuscles())
        )

    # Initial guess
    x_init = InitialConditionsList()
    if activation_driven:
        # state_base = np.ndarray((12, n_shooting_points+1))
        # for i in range(n_shooting_points+1):
        #     state_base[:, i] = np.concatenate((state_init[:6, 0], np.zeros((6))))
        x_init.add(np.concatenate((state_init[6:biorbd_model.nbQ() + 6, :],
                                   state_init[biorbd_model.nbQ() + 12:-nb_mus, :])),
                   interpolation=InterpolationType.EACH_FRAME)
        # x_init.add(state_init[:-nb_mus, :], interpolation=InterpolationType.EACH_FRAME)
    else:
        # x_init.add([0] * (biorbd_model.nbQ() + biorbd_model.nbQdot()) + [0] * biorbd_model.nbMuscles())
        x_init.add(state_init[biorbd_model.nbQ():, :], interpolation=InterpolationType.EACH_FRAME)

    # Add muscle to the bounds
    u_bounds = BoundsList()
    u_init = InitialConditionsList()
    nb_tau = 6
    # init_residual_torque = np.concatenate((np.ones((biorbd_model.nbGeneralizedTorque(), n_shooting_points))*0.5,
    #                                        excitations_ref))
    if use_residual_torque:
        u_bounds.add(
            [
                [torque_min] * biorbd_model.nbGeneralizedTorque() + [excitation_min] * biorbd_model.nbMuscleTotal(),
                [torque_max] * biorbd_model.nbGeneralizedTorque() + [excitation_max] * biorbd_model.nbMuscleTotal(),
            ]
        )
        u_init.add(
            [torque_init] * biorbd_model.nbGeneralizedTorque() + [excitation_init] * biorbd_model.nbMuscleTotal())
        # u_init.add(init_residual_torque, interpolation=InterpolationType.EACH_FRAME)

    else:
        u_bounds.add(
            [[excitation_min] * biorbd_model.nbMuscleTotal(), [excitation_max] * biorbd_model.nbMuscleTotal()])
        if activation_driven:
            # u_init.add([activation_init] * biorbd_model.nbMuscleTotal())
            u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)
        else:
            # u_init.add([excitation_init] * biorbd_model.nbMuscleTotal())
            u_init.add(excitations_ref, interpolation=InterpolationType.EACH_FRAME)

    # Get initial isometric forces
    fiso = []
    for k in range(nb_mus):
        fiso.append(biorbd_model.muscle(k).characteristics().forceIsoMax().to_mx())


    # ------------- #
    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        nb_threads=nb_threads,
        use_SX=use_SX,
        # parameters=parameters
    )
def prepare_ocp(biorbd_model_path="../models/BrasViolon.bioMod"):
    """
    Mix .bioMod and users data to call OptimalControlProgram constructor.
    :param biorbd_model_path: path to the .bioMod file.
    :param show_online_optim: bool which active live plot function.
    :return: OptimalControlProgram object.
    """
    optimal_initial_values = False
    nb_phases = 2

    biorbd_model = []
    objective_functions = ObjectiveList()
    dynamics = DynamicsTypeList()
    constraints = ConstraintList()
    x_bounds = BoundsList()
    u_bounds = BoundsList()
    x_init = InitialConditionsList()
    u_init = InitialConditionsList()

    # --- Options --- #
    number_shooting_points = [20] * nb_phases
    final_time = [1] * nb_phases

    muscle_activated_init, muscle_fatigued_init, muscle_resting_init = 0, 0, 1
    torque_min, torque_max, torque_init = -10, 10, 0
    muscle_states_min, muscle_states_max = 0, 1

    # --- Aliasing --- #
    model_tp = biorbd.Model(biorbd_model_path)
    n_q = model_tp.nbQ()
    n_qdot = model_tp.nbQdot()
    n_tau = model_tp.nbGeneralizedTorque()
    n_mus = model_tp.nbMuscles()
    violon_string = Violin("G")
    inital_bow_side = Bow("frog")

    # --- External forces --- #
    external_forces = [
        np.repeat(violon_string.external_force[:, np.newaxis], number_shooting_points[0], axis=1)
    ] * nb_phases

    for idx_phase in range(nb_phases):

        biorbd_model.append(biorbd.Model(biorbd_model_path))

        # --- Objective --- #
        objective_functions.add(Objective.Lagrange.MINIMIZE_MUSCLES_CONTROL, weight=1, phase=idx_phase)
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=1, phase=idx_phase)
        objective_functions.add(
            Objective.Lagrange.ALIGN_SEGMENT_WITH_CUSTOM_RT,
            weight=1,
            segment_idx=Bow.segment_idx,
            rt_idx=violon_string.rt_on_string,
            phase=idx_phase,
        )
        objective_functions.add(
            Objective.Lagrange.MINIMIZE_TORQUE, controls_idx=[0, 1, 2, 3], weight=10, phase=idx_phase
        )

        # --- Dynamics --- #
        dynamics.add(xia.xia_model_configuration, dynamic_function=xia.xia_model_dynamic)

        # --- Constraints --- #
        if idx_phase == 0:
            constraints.add(
                Constraint.ALIGN_MARKERS,
                instant=Instant.START,
                min_bound=-0.00001,
                max_bound=0.00001,
                first_marker_idx=Bow.frog_marker,
                second_marker_idx=violon_string.bridge_marker,
                phase=idx_phase,
            )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.MID,
            min_bound=-0.00001,
            max_bound=0.00001,
            first_marker_idx=Bow.tip_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
        )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.END,
            min_bound=-0.00001,
            max_bound=0.00001,
            first_marker_idx=Bow.frog_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
        )
        # constraints.add(
        #     Constraint.ALIGN_SEGMENT_WITH_CUSTOM_RT,
        #     instant=Instant.ALL,
        #     min_bound=-0.00001,
        #     max_bound=0.00001,
        #     segment_idx=Bow.segment_idx,
        #     rt_idx=violon_string.rt_on_string,
        #     phase=idx_phase,
        # )
        # constraints.add(
        #     Constraint.ALIGN_MARKER_WITH_SEGMENT_AXIS,
        #     instant=Instant.ALL,
        #     min_bound=-0.00001,
        #     max_bound=0.00001,
        #     marker_idx=violon_string.bridge_marker,
        #     segment_idx=Bow.segment_idx,
        #     axis=(Axe.Y),
        #     phase=idx_phase,
        # )
        constraints.add(
            Constraint.ALIGN_MARKERS,
            instant=Instant.ALL,
            first_marker_idx=Bow.contact_marker,
            second_marker_idx=violon_string.bridge_marker,
            phase=idx_phase,
            # TODO: add constraint about velocity in a marker of bow (start and end instant)
        )

        # --- Path constraints --- #
        x_bounds.add(QAndQDotBounds(biorbd_model[0]), phase=idx_phase)

        # Start and finish with zero velocity
        if idx_phase == 0:
            x_bounds[idx_phase][n_q :, 0] = 0
        if idx_phase == nb_phases - 1:
            x_bounds[idx_phase][n_q :, -1] = 0

        muscle_states_bounds = Bounds(
            [muscle_states_min] * n_mus * 3,
            [muscle_states_max] * n_mus * 3,
        )
        if idx_phase == 0:
            # fatigued_fibers = activated_fibers = 0 and resting_fibers = 1 at start
            muscle_states_bounds[:2 * n_mus, 0] = 0
            muscle_states_bounds[2 * n_mus:, 0] = 1
        x_bounds[idx_phase].concatenate(muscle_states_bounds)

        u_bounds.add(
            [[torque_min] * n_tau + [muscle_states_min] * n_mus, [torque_max] * n_tau + [muscle_states_max] * n_mus],
            phase=idx_phase,
        )

        # --- Initial guess --- #
        if optimal_initial_values:
            # TODO: Fix this part (avoid using .bio)
            raise NotImplementedError("optimal_initial_values = True should be reviewed")
            if idx_phase == 0:
                with open(f"utils/optimal_init_{number_shooting_points[0]}_nodes_constr_first.bio", "rb") as file:
                    dict = pickle.load(file)
            else:
                with open(f"utils/optimal_init_{number_shooting_points[0]}_nodes_constr_first.bio", "rb") as file:
                    dict = pickle.load(file)

            x_init.add(dict["states"], interpolation=InterpolationType.EACH_FRAME, phase=idx_phase)
            u_init.add(dict["controls"], interpolation=InterpolationType.EACH_FRAME, phase=idx_phase)

        else:
            # TODO: x_init could be a LINEAR from frog to tip
            x_init.add(
                violon_string.initial_position()[inital_bow_side.side] + [0] * n_qdot,
                interpolation=InterpolationType.CONSTANT,
                phase=idx_phase,
            )
            muscle_states_init = InitialConditions(
                [muscle_activated_init] * n_mus + [muscle_fatigued_init] * n_mus + [muscle_resting_init] * n_mus,
                interpolation=InterpolationType.CONSTANT,
            )
            x_init[idx_phase].concatenate(muscle_states_init)

            u_init.add(
                [torque_init] * n_tau + [muscle_activated_init] * n_mus,
                interpolation=InterpolationType.CONSTANT,
                phase=idx_phase,
            )
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        external_forces=external_forces,
        ode_solver=OdeSolver.RK,
        nb_threads=4,
    )
Exemple #27
0
def prepare_ocp(model_path, phase_time, number_shooting_points, direction,
                boundary):
    # --- Options --- #
    # Model path
    biorbd_model = biorbd.Model(model_path)
    tau_min, tau_max, tau_ini = -500, 500, 0
    tau_mapping = BidirectionalMapping(Mapping([-1, -1, -1, 0]), Mapping([3]))

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # Constraints
    constraints = ConstraintList()
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=1,
        boundary=boundary,
    )
    constraints.add(
        Constraint.CONTACT_FORCE_INEQUALITY,
        direction=direction,
        instant=Instant.ALL,
        contact_force_idx=2,
        boundary=boundary,
    )

    # Path constraint
    nb_q = biorbd_model.nbQ()
    nb_qdot = nb_q
    pose_at_first_node = [0, 0, -0.75, 0.75]

    # Initialize X_bounds
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * tau_mapping.reduce.len,
                  [tau_max] * tau_mapping.reduce.len])

    u_init = InitialConditionsList()
    u_init.add([tau_ini] * tau_mapping.reduce.len)
    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        tau_mapping=tau_mapping,
    )
Exemple #28
0
def prepare_ocp(model_path,
                phase_time,
                number_shooting_points,
                use_symmetry=True,
                use_actuators=True):
    # --- Options --- #
    # Model path
    biorbd_model = [biorbd.Model(elt) for elt in model_path]

    nb_phases = len(biorbd_model)
    if use_actuators:
        tau_min, tau_max, tau_init = -1, 1, 0
    else:
        tau_min, tau_max, tau_init = -500, 500, 0

    if use_symmetry:
        q_mapping = BidirectionalMapping(
            Mapping([0, 1, 2, -1, 3, -1, 3, 4, 5, 6, 4, 5, 6], [5]),
            Mapping([0, 1, 2, 4, 7, 8, 9]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = BidirectionalMapping(
            Mapping([-1, -1, -1, -1, 0, -1, 0, 1, 2, 3, 1, 2, 3], [5]),
            Mapping([4, 7, 8, 9]))
        tau_mapping = tau_mapping, tau_mapping

    else:
        q_mapping = BidirectionalMapping(
            Mapping([i for i in range(biorbd_model[0].nbQ())]),
            Mapping([i for i in range(biorbd_model[0].nbQ())]))
        q_mapping = q_mapping, q_mapping
        tau_mapping = q_mapping

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Mayer.MINIMIZE_PREDICTED_COM_HEIGHT,
                            weight=-1,
                            phase=1)

    # Dynamics
    dynamics = DynamicsTypeList()
    if use_actuators:
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
        dynamics.add(DynamicsType.TORQUE_ACTIVATIONS_DRIVEN_WITH_CONTACT)
    else:
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)
        dynamics.add(DynamicsType.TORQUE_DRIVEN_WITH_CONTACT)

    # --- Constraints --- #
    constraints = ConstraintList()

    # Positivity constraints of the normal component of the reaction forces
    contact_axes = (1, 2, 4, 5)
    for i in contact_axes:
        constraints.add(Constraint.CONTACT_FORCE_INEQUALITY,
                        phase=0,
                        direction="GREATER_THAN",
                        instant=Instant.ALL,
                        contact_force_idx=i,
                        boundary=0)
    contact_axes = (1, 3)
    for i in contact_axes:
        constraints.add(Constraint.CONTACT_FORCE_INEQUALITY,
                        phase=1,
                        direction="GREATER_THAN",
                        instant=Instant.ALL,
                        contact_force_idx=i,
                        boundary=0)

    # Non-slipping constraints
    # N.B.: Application on only one of the two feet is sufficient, as the slippage cannot occurs on only one foot.
    constraints.add(Constraint.NON_SLIPPING,
                    phase=0,
                    instant=Instant.ALL,
                    normal_component_idx=(1, 2),
                    tangential_component_idx=0,
                    static_friction_coefficient=0.5)
    constraints.add(Constraint.NON_SLIPPING,
                    phase=1,
                    instant=Instant.ALL,
                    normal_component_idx=1,
                    tangential_component_idx=0,
                    static_friction_coefficient=0.5)

    # Custom constraints for contact forces at transitions
    # constraints_second_phase.append(
    #     {"type": Constraint.CUSTOM, "function": from_2contacts_to_1, "instant": Instant.START}
    # )

    # Custom constraints for positivity of CoM_dot on z axis just before the take-off
    constraints.add(CoM_dot_Z_last_node_positivity,
                    phase=1,
                    instant=Instant.END,
                    min_bound=0,
                    max_bound=np.inf)

    # TODO: Make it works also with no symmetry (adapt to refactor)
    # if not use_symmetry:
    #     first_dof = (3, 4, 7, 8, 9)
    #     second_dof = (5, 6, 10, 11, 12)
    #     coef = (-1, 1, 1, 1, 1)
    #     for i in range(len(first_dof)):
    #         for elt in [
    #             constraints_first_phase,
    #             constraints_second_phase,
    #         ]:
    #             elt.append(
    #                 {
    #                     "type": Constraint.PROPORTIONAL_STATE,
    #                     "instant": Instant.ALL,
    #                     "first_dof": first_dof[i],
    #                     "second_dof": second_dof[i],
    #                     "coef": coef[i],
    #                 }
    #             )

    # constraints = (
    #     constraints_first_phase,
    #     constraints_second_phase,
    # )

    # # Time constraint
    # for i in range(nb_phases):
    #     constraints.add(Constraint.TIME_CONSTRAINT, phase=i, minimum=time_min[i], maximum=time_max[i])

    # --- Path constraints --- #
    if use_symmetry:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [0, 0, -0.5336, 1.4, 0.8, -0.9, 0.47]
    else:
        nb_q = q_mapping[0].reduce.len
        nb_qdot = nb_q
        pose_at_first_node = [
            0, 0, -0.5336, 0, 1.4, 0, 1.4, 0.8, -0.9, 0.47, 0.8, -0.9, 0.47
        ]

    # Initialize x_bounds (Interpolation type is CONSTANT_WITH_FIRST_AND_LAST_DIFFERENT)
    x_bounds = BoundsList()
    for i in range(nb_phases):
        x_bounds.add(
            QAndQDotBounds(biorbd_model[i],
                           all_generalized_mapping=q_mapping[i]))
    x_bounds[0].min[:, 0] = pose_at_first_node + [0] * nb_qdot
    x_bounds[0].max[:, 0] = pose_at_first_node + [0] * nb_qdot

    # # Initial guess for states (Interpolation type is CONSTANT)
    # x_init = InitialConditionsList()
    # for i in range(nb_phases):
    #     x_init.add(pose_at_first_node + [0] * nb_qdot)

    # Initial guess for states (Interpolation type is CONSTANT for 1st phase and SPLINE with 3 key positions for 2nd phase)
    x_init = InitialConditionsList()
    x_init.add(pose_at_first_node +
               [0] * nb_qdot)  # x_init phase 0 type CONSTANT
    t_spline = np.hstack((0, 0.34, phase_time[1]))
    p0 = np.array([pose_at_first_node + [0] * nb_qdot]).T
    p_flex = np.array(
        [[-0.12, -0.23, -1.10, 1.85, 2.06, -1.67, 0.55, 0, 0, 0, 0, 0, 0,
          0]]).T
    p_end = p0
    key_positions = np.hstack((p0, p_flex, p_end))
    x_init.add(
        key_positions, t=t_spline,
        interpolation=InterpolationType.SPLINE)  # x_init phase 1 type SPLINE

    # Define control path constraint
    u_bounds = BoundsList()
    for tau_m in tau_mapping:
        u_bounds.add(
            [[tau_min] * tau_m.reduce.len, [tau_max] * tau_m.reduce.len],
            interpolation=InterpolationType.CONSTANT
        )  # This precision of the CONSTANT type is for informative purposes only

    u_init = InitialConditionsList()
    for tau_m in tau_mapping:
        u_init.add(
            [tau_init] *
            tau_m.reduce.len)  # Interpolation type is CONSTANT (default value)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        phase_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        q_mapping=q_mapping,
        q_dot_mapping=q_mapping,
        tau_mapping=tau_mapping,
        nb_threads=2,
    )
Exemple #29
0
def prepare_ocp(
    final_time, time_min, time_max, number_shooting_points, biorbd_model_path="cube.bioMod", ode_solver=OdeSolver.RK
):
    # --- Options --- #
    nb_phases = len(number_shooting_points)
    if nb_phases != 1 and nb_phases != 3:
        raise RuntimeError("Number of phases must be 1 to 3")

    # Model path
    biorbd_model = (biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path), biorbd.Model(biorbd_model_path))

    # Problem parameters
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=0)
    if nb_phases == 3:
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=1)
        objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE, weight=100, phase=2)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=0)
    if nb_phases == 3:
        dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=1)
        dynamics.add(DynamicsType.TORQUE_DRIVEN, phase=2)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.START, first_marker_idx=0, second_marker_idx=1, phase=0)
    constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=0)
    constraints.add(Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[0], maximum=time_max[0], phase=0)
    if nb_phases == 3:
        constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=1, phase=1)
        constraints.add(
            Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[1], maximum=time_max[1], phase=1
        )
        constraints.add(Constraint.ALIGN_MARKERS, instant=Instant.END, first_marker_idx=0, second_marker_idx=2, phase=2)
        constraints.add(
            Constraint.TIME_CONSTRAINT, instant=Instant.END, minimum=time_min[2], maximum=time_max[2], phase=2
        )

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 0
    if nb_phases == 3:
        x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 1
        x_bounds.add(QAndQDotBounds(biorbd_model[0]))  # Phase 2

    for bounds in x_bounds:
        for i in [1, 3, 4, 5]:
            bounds.min[i, [0, -1]] = 0
            bounds.max[i, [0, -1]] = 0
    x_bounds[0].min[2, 0] = 0.0
    x_bounds[0].max[2, 0] = 0.0
    if nb_phases == 3:
        x_bounds[2].min[2, [0, -1]] = [0.0, 1.57]
        x_bounds[2].max[2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    if nb_phases == 3:
        x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
        x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    if nb_phases == 3:
        u_bounds.add(
            [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()]
        )
        u_bounds.add(
            [[tau_min] * biorbd_model[0].nbGeneralizedTorque(), [tau_max] * biorbd_model[0].nbGeneralizedTorque()]
        )

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    if nb_phases == 3:
        u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
        u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())

    # ------------- #

    return OptimalControlProgram(
        biorbd_model[:nb_phases],
        dynamics,
        number_shooting_points,
        final_time[:nb_phases],
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
    )
Exemple #30
0
def prepare_ocp(biorbd_model_path="cube.bioMod", ode_solver=OdeSolver.RK):
    # --- Options --- #
    # Model path
    biorbd_model = (
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
        biorbd.Model(biorbd_model_path),
    )

    # Problem parameters
    number_shooting_points = (20, 20, 20, 20)
    final_time = (2, 5, 4, 2)
    tau_min, tau_max, tau_init = -100, 100, 0

    # Add objective functions
    objective_functions = ObjectiveList()
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=0)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=1)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=2)
    objective_functions.add(Objective.Lagrange.MINIMIZE_TORQUE,
                            weight=100,
                            phase=3)

    # Dynamics
    dynamics = DynamicsTypeList()
    dynamics.add(DynamicsType.TORQUE_DRIVEN)
    dynamics.add(DynamicsType.TORQUE_DRIVEN)
    dynamics.add(DynamicsType.TORQUE_DRIVEN)
    dynamics.add(DynamicsType.TORQUE_DRIVEN)

    # Constraints
    constraints = ConstraintList()
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.START,
                    first_marker_idx=0,
                    second_marker_idx=1,
                    phase=0)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2,
                    phase=0)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=1,
                    phase=1)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=2,
                    phase=2)
    constraints.add(Constraint.ALIGN_MARKERS,
                    instant=Instant.END,
                    first_marker_idx=0,
                    second_marker_idx=1,
                    phase=3)

    # Path constraint
    x_bounds = BoundsList()
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))
    x_bounds.add(QAndQDotBounds(biorbd_model[0]))

    x_bounds[0].min[[1, 3, 4, 5], 0] = 0
    x_bounds[0].max[[1, 3, 4, 5], 0] = 0
    x_bounds[-1].min[[1, 3, 4, 5], -1] = 0
    x_bounds[-1].max[[1, 3, 4, 5], -1] = 0

    x_bounds[0].min[2, 0] = 0.0
    x_bounds[0].max[2, 0] = 0.0
    x_bounds[2].min[2, [0, -1]] = [0.0, 1.57]
    x_bounds[2].max[2, [0, -1]] = [0.0, 1.57]

    # Initial guess
    x_init = InitialConditionsList()
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))
    x_init.add([0] * (biorbd_model[0].nbQ() + biorbd_model[0].nbQdot()))

    # Define control path constraint
    u_bounds = BoundsList()
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])
    u_bounds.add([[tau_min] * biorbd_model[0].nbGeneralizedTorque(),
                  [tau_max] * biorbd_model[0].nbGeneralizedTorque()])

    u_init = InitialConditionsList()
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    u_init.add([tau_init] * biorbd_model[0].nbGeneralizedTorque())
    """
    By default, all state transitions (here phase 0 to phase 1, phase 1 to phase 2 and phase 2 to phase 3)
    are continuous. In the event that one (or more) state transition(s) is desired to be discontinuous, 
    as for example IMPACT or CUSTOM can be used as below. 
    "phase_pre_idx" corresponds to the index of the phase preceding the transition.
    IMPACT will cause an impact related discontinuity when defining one or more contact points in the model.
    CUSTOM will allow to call the custom function previously presented in order to have its own state transition.
    Finally, if you want a state transition (continuous or not) between the last and the first phase (cyclicity) 
    you can use the dedicated StateTransition.Cyclic or use a continuous set at the lase phase_pre_idx.
    
    If for some reason, you don't want the state transition to be hard constraint, you can specify a weight higher than
    zero. It will thereafter be treated as a Mayer objective function with the specified weight. 
    """
    state_transitions = StateTransitionList()
    state_transitions.add(StateTransition.IMPACT, phase_pre_idx=1)
    state_transitions.add(custom_state_transition,
                          phase_pre_idx=2,
                          idx_1=1,
                          idx_2=3)
    state_transitions.add(StateTransition.CYCLIC)

    # ------------- #

    return OptimalControlProgram(
        biorbd_model,
        dynamics,
        number_shooting_points,
        final_time,
        x_init,
        u_init,
        x_bounds,
        u_bounds,
        objective_functions,
        constraints,
        ode_solver=ode_solver,
        state_transitions=state_transitions,
    )