Exemple #1
0
    def test_semi_markov(self):
        smm = SemiMarkov(5, min_dwell=3, max_dwell=13, dwell_times=4.3)

        n = 28
        seq = smm.sample(n)

        self.assertEqual(len(seq), n)
Exemple #2
0
    def test_pure_markov(self):
        smm = SemiMarkov(4)

        n = 12
        seq = smm.sample(n)

        self.assertEqual(len(seq), n)
Exemple #3
0
    def test_default_seed_is_zero(self):
        smm2 = SemiMarkov(self.n_components, rng=0)

        n = 50
        seq1 = self.smm.sample(n)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #4
0
    def test_int_seed_uses_numpy_default_rng(self):
        smm2 = SemiMarkov(self.n_components, rng=np.random.default_rng(0))

        n = 43
        seq1 = self.smm.sample(n)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #5
0
 def setUp(self):
     self.n_components = 4
     self.min_dwell = [2, 3, 1, 0]
     self.max_dwell = [5, 3, np.inf, 4]
     self.dwell_times = [2.5, 3.0, 3.5, 2.0]
     self.smm = SemiMarkov(
         self.n_components,
         min_dwell=self.min_dwell,
         max_dwell=self.max_dwell,
         dwell_times=self.dwell_times,
     )
Exemple #6
0
    def test_all_transitions_occur_if_dwell_time_larger_than_one(self):
        n_components = 3
        smm = SemiMarkov(n_components, rng=5, dwell_times=2.0)

        n_seq = 5
        n = 200
        for i in range(n_seq):
            seq = smm.sample(n)
            pairs = set(zip(seq, seq[1:]))

            self.assertEqual(len(pairs), n_components**2)
Exemple #7
0
    def test_all_non_dwelling_transitions_occur_by_default(self):
        n_components = 3
        smm = SemiMarkov(n_components, rng=4)

        n_seq = 5
        n = 200
        for i in range(n_seq):
            seq = smm.sample(n)
            pairs = set(zip(seq, seq[1:]))

            self.assertEqual(len(pairs), n_components * (n_components - 1))
Exemple #8
0
    def test_transform_second_retval_is_usage_seq_from_semi_markov_when_ret_usseq(
            self):
        arma_hsmm = ArmaHSMM(self.armas)

        n = 15
        _, usage_seq = arma_hsmm.transform(n, return_usage_seq=True)

        smm = SemiMarkov(2)
        usage_seq_exp = smm.sample(n)

        np.testing.assert_allclose(usage_seq, usage_seq_exp)
Exemple #9
0
    def test_single_non_zero_initial_prob(self):
        n_components = 6
        start_prob = np.zeros(n_components)
        state_idx = 3
        start_prob[state_idx] = 1.0
        smm = SemiMarkov(n_components, start_prob=start_prob)

        n_seq = 40
        n = 4
        for i in range(n_seq):
            seq = smm.sample(n)
            self.assertEqual(seq[0], state_idx, f"at iteration {i}")
Exemple #10
0
    def test_all_states_occur_by_default(self):
        n_components = 5
        smm = SemiMarkov(n_components, rng=2)

        n_seq = 50
        n = 3
        all_ini_states = []
        for i in range(n_seq):
            seq = smm.sample(n)
            all_ini_states.append(seq[0])

        self.assertEqual(set(all_ini_states), set(range(n_components)))
Exemple #11
0
    def test_additional_init_kwargs_passed_to_semi_markov(self):
        kwargs = dict(max_dwell=20, rng=5)
        arma_hsmm = ArmaHSMM(self.armas, **kwargs)

        n = 15
        _, _, usage_seq = arma_hsmm.transform(n,
                                              return_input=True,
                                              return_usage_seq=True)

        smm = SemiMarkov(2, **kwargs)
        usage_seq_exp = smm.sample(n)

        np.testing.assert_allclose(usage_seq, usage_seq_exp)
Exemple #12
0
class TestSemiMarkovDwellTimeConstraintsObeyed(unittest.TestCase):
    def setUp(self):
        self.n_components = 4
        self.min_dwell = [2, 3, 1, 0]
        self.max_dwell = [5, 3, np.inf, 4]
        self.dwell_times = [2.5, 3.0, 3.5, 2.0]
        self.smm = SemiMarkov(
            self.n_components,
            min_dwell=self.min_dwell,
            max_dwell=self.max_dwell,
            dwell_times=self.dwell_times,
        )

    @staticmethod
    def to_rle(seq: np.ndarray) -> list:
        starts = np.hstack(([0], np.diff(seq).nonzero()[0] + 1, len(seq)))
        rle = [(seq[tmp1], tmp2 - tmp1)
               for tmp1, tmp2 in zip(starts, starts[1:])]

        return rle

    def test_dwell_times_reach_minimum_but_do_not_go_below(self):
        seq = self.smm.sample(300)
        seq_rle = self.to_rle(seq)

        for i in range(self.n_components):
            # last element of RLE might be truncated due to n_samples
            dwell_times = [_[1] for _ in seq_rle[:-1] if _[0] == i]

            self.assertGreater(len(dwell_times), 0,
                               f"State {i} does not occur")
            self.assertEqual(np.min(dwell_times), max(1, self.min_dwell[i]),
                             f"State {i}")

    def test_dwell_times_reach_maximum_but_do_not_go_above(self):
        seq = self.smm.sample(2000)
        seq_rle = self.to_rle(seq)

        for i in range(self.n_components):
            # last element of RLE might be truncated due to n_samples
            dwell_times = [_[1] for _ in seq_rle[:-1] if _[0] == i]

            self.assertGreater(len(dwell_times), 0,
                               f"State {i} does not occur")
            if np.isfinite(self.max_dwell[i]):
                self.assertEqual(np.max(dwell_times), self.max_dwell[i],
                                 f"State {i}")
            else:
                self.assertGreater(len(np.unique(dwell_times)), 0,
                                   f"State {i}")
Exemple #13
0
    def __init__(self, models: Sequence, **kwargs):
        """ Initialize the ARMA HSMM.

        Parameters
        ----------
        models
            Sequence of models to use. This sets the number of states in the
            semi-Markov model.
        All other keyword arguments are passed to the semi-Markov model
        constructor.
        """
        self.models = models
        self.smm = SemiMarkov(len(models), **kwargs)

        self.n_features = 1
        self.n_components = 1
Exemple #14
0
    def test_several_non_zero_initial_prob(self):
        n_components = 6
        start_prob = np.zeros(n_components)
        state_idxs = [1, 3, 5]
        start_prob[state_idxs] = 1.0 / len(state_idxs)
        smm = SemiMarkov(n_components, start_prob=start_prob, rng=1)

        n_seq = 40
        n = 4
        all_ini_states = []
        for i in range(n_seq):
            seq = smm.sample(n)
            self.assertIn(seq[0], state_idxs, f"at iteration {i}")

            all_ini_states.append(seq[0])

        self.assertEqual(set(all_ini_states), set(state_idxs))
Exemple #15
0
    def test_absorbing_state(self):
        n_components = 3
        abs_idx = 2
        dwell_times = np.ones(n_components)
        dwell_times[abs_idx] = np.inf
        smm = SemiMarkov(n_components, dwell_times=dwell_times)

        n_seq = 10
        n = 16
        for i in range(n_seq):
            seq = smm.sample(n)
            where_abs = (seq == abs_idx).nonzero()[0]

            # make sure we reach absorbing state
            self.assertGreater(len(where_abs), 0)

            # and stay there once we've reached it
            np.testing.assert_equal(seq[where_abs[0]:], abs_idx)
    def __getitem__(self, idx: int) -> SwitchingSnippetSignal:
        """ Generate a signal.

        Parameters
        ----------
        idx
            The index of the signal to generate.

        Returns a `SwitchingSnippetSignal` instance. Note that the signal is generated
        anew every time it is accessed, making this a potentially time-consuming
        operation.
        """
        if idx < 0:
            idx = self.n_signals + idx
        if idx < 0 or idx >= self.n_signals:
            raise IndexError("index out of range")

        seed = self.signal_seeds[idx]
        rng = np.random.default_rng(seed)

        # create an ArmaHSMM instance
        semi_markov = SemiMarkov(len(self.snippets),
                                 rng=rng,
                                 **self.semi_markov_kws)
        usage_seq = semi_markov.sample(self.n_samples)

        # generate the signal
        y = np.zeros(self.n_samples)
        usage_rle = rle_encode(usage_seq)
        idx = 0
        for elem, n in usage_rle:
            crt_snippet = self.snippets[elem]
            crt_start = rng.integers(0, len(crt_snippet) - n + 1)
            y[idx:idx + n] = crt_snippet[crt_start:crt_start + n]
            idx += n

        # normalize, if asked to
        if self.normalize:
            scale = 1.0 / np.std(y)
            y *= scale
        else:
            scale = 1.0

        return SwitchingSnippetSignal(y=y, usage_seq=usage_seq, scale=scale)
Exemple #17
0
    def test_deterministic_cyclic_transitions(self):
        n_components = 4
        cycle = [2, 3, 1, 0]
        trans_mat = np.zeros((n_components, n_components))
        allowed_pairs = set()
        for i in range(len(cycle)):
            s1 = cycle[i]
            s2 = cycle[(i + 1) % len(cycle)]
            trans_mat[s1, s2] = 1.0
            allowed_pairs.add((s1, s2))
        smm = SemiMarkov(n_components, trans_mat=trans_mat)

        n_seq = 6
        n = 40
        for i in range(n_seq):
            seq = smm.sample(n)
            pairs = set(zip(seq, seq[1:]))

            for s1, s2 in pairs:
                self.assertIn((s1, s2), allowed_pairs, f"iteration {i}")
Exemple #18
0
class TestSemiMarkovStateContentOfOutputIsRight(unittest.TestCase):
    def setUp(self):
        self.n_components = 4
        self.smm = SemiMarkov(self.n_components, rng=1)

    def test_all_states_are_between_zero_and_n_components(self):
        n = 100
        seq = self.smm.sample(n)

        self.assertGreaterEqual(np.min(seq), 0)
        self.assertLess(np.max(seq), self.n_components)

    def test_lowest_state_in_long_sequence_is_zero(self):
        n = 200
        seq = self.smm.sample(n)

        self.assertEqual(np.min(seq), 0)

    def test_highest_state_in_long_sequence_is_n_components_minus_one(self):
        n = 200
        seq = self.smm.sample(n)

        self.assertEqual(np.max(seq), self.n_components - 1)
Exemple #19
0
class TestSemiMarkovWithPseudorandom(unittest.TestCase):
    def setUp(self):
        self.n_components = 4
        self.smm = SemiMarkov(self.n_components)

    def test_repeated_runs_yield_different_results(self):
        n = 100
        seq1 = self.smm.sample(n)
        seq2 = self.smm.sample(n)

        self.assertGreater(np.max(np.abs(seq1 - seq2)), 0)

    def test_default_seed_is_zero(self):
        smm2 = SemiMarkov(self.n_components, rng=0)

        n = 50
        seq1 = self.smm.sample(n)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)

    def test_output_is_int(self):
        n = 23
        seq = self.smm.sample(n)

        dtype = np.asarray(seq).dtype
        self.assertTrue(np.issubdtype(dtype, np.integer))

    def test_int_seed_uses_numpy_default_rng(self):
        smm2 = SemiMarkov(self.n_components, rng=np.random.default_rng(0))

        n = 43
        seq1 = self.smm.sample(n)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #20
0
    def setUp(self):
        self.n_components = 3
        self.start_prob = np.asarray([0.2, 0.5, 0.3])
        self.trans_mat = np.asarray([[0.0, 0.3, 0.7], [0.1, 0.0, 0.9],
                                     [0.5, 0.5, 0.0]])
        self.dwell_times = np.asarray([2.5, 4.5, 3.0])
        self.min_dwell = np.asarray([2, 3, 1])
        self.max_dwell = np.asarray([np.inf, 10, 8])
        self.rng = np.random.default_rng(4)

        self.smm = SemiMarkov(
            self.n_components,
            start_prob=self.start_prob,
            trans_mat=self.trans_mat,
            dwell_times=self.dwell_times,
            min_dwell=self.min_dwell,
            max_dwell=self.max_dwell,
            rng=self.rng,
        )
Exemple #21
0
    def test_default_dwell_times_are_equal_to_one(self):
        ns = 3
        rng = np.random.default_rng(3)
        trans_mat = rng.uniform(size=(ns, ns))

        smm1 = SemiMarkov(ns, trans_mat=trans_mat)

        n = 10
        seq1 = smm1.sample(n)

        smm2 = SemiMarkov(ns, trans_mat=trans_mat, dwell_times=1)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #22
0
    def test_diagonal_trans_mat_elements_are_ignored(self):
        ns = 5
        rng = np.random.default_rng(1)
        trans_mat1 = rng.uniform(size=(ns, ns))
        trans_mat2 = np.copy(trans_mat1)
        trans_mat1 += np.diag(rng.uniform(low=-1, high=1, size=ns))
        smm1 = SemiMarkov(ns, trans_mat=trans_mat1)

        n = 32
        seq1 = smm1.sample(n)

        smm2 = SemiMarkov(ns, trans_mat=trans_mat2)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #23
0
    def test_dwell_times_affect_generated_sequence(self):
        ns = 3
        rng = np.random.default_rng(4)
        trans_mat = rng.uniform(size=(ns, ns))

        dwell_times1 = rng.uniform(low=0, high=10, size=ns)
        smm1 = SemiMarkov(ns, trans_mat=trans_mat, dwell_times=dwell_times1)

        n = 100
        seq1 = smm1.sample(n)

        dwell_times2 = rng.uniform(low=0, high=10, size=ns)
        smm2 = SemiMarkov(ns, trans_mat=trans_mat, dwell_times=dwell_times2)
        seq2 = smm2.sample(n)

        self.assertGreater(np.max(np.abs(seq1 - seq2)), 0)
Exemple #24
0
    def test_offdiagonal_trans_mat_elements_are_normalized(self):
        ns = 4
        rng = np.random.default_rng(2)
        trans_mat1 = rng.uniform(size=(ns, ns))
        trans_mat1 -= np.diag(np.diag(trans_mat1))

        trans_mat2 = 3.2 * trans_mat1

        smm1 = SemiMarkov(ns, trans_mat=trans_mat1)

        n = 27
        seq1 = smm1.sample(n)

        smm2 = SemiMarkov(ns, trans_mat=trans_mat2)
        seq2 = smm2.sample(n)

        np.testing.assert_equal(seq1, seq2)
Exemple #25
0
class ArmaHSMM(object):
    """ A hidden semi-Markov model with ARMA emissions.

    This class can be used to generate samples from a non-stationary stochastic
    process that stochastically switches between several ARMA processes based on
    a hidden semi-Markov model.

    Attributes
    ==========
    n_features : int
        Number of input dimensions. This is always equal to 1.
     n_components : int
        Number of output dimensions.This is always equal to 1.
    models
        Sequence of models to use.
    smm
        Semi-Markov model used to generate ARMA states.
    """

    def __init__(self, models: Sequence, **kwargs):
        """ Initialize the ARMA HSMM.

        Parameters
        ----------
        models
            Sequence of models to use. This sets the number of states in the
            semi-Markov model.
        All other keyword arguments are passed to the semi-Markov model
        constructor.
        """
        self.models = models
        self.smm = SemiMarkov(len(models), **kwargs)

        self.n_features = 1
        self.n_components = 1

    def transform(
        self,
        n_samples: Optional[int] = None,
        X: Union[None, Sequence, Callable] = None,
        initial_conditions: Optional[Tuple[Sequence, Sequence]] = None,
        return_input: bool = False,
        return_usage_seq: bool = False,
    ) -> Union[
        np.ndarray,
        Tuple[np.ndarray, np.ndarray],
        Tuple[np.ndarray, np.ndarray, np.ndarray],
    ]:
        """ Process input samples.

        The function uses exactly `n_samples` input samples.

        If no input source is explicitly provided, the default source for each
        of the ARMAs is used. An exception is raised if a process needs to be
        used that does not have a default source.

        Parameters
        ----------
        n_samples
            Number of samples to generate. If not provided, `U` must be provided
            and it must be a sequence.
        X
            Input samples or input generator. See `Arma.transform`.
        initial_conditions
            A tuple, `(initial_y, initial_x)`, of recent samples of the output
            and input sequences used to seed the simulation. If these are not
            provided, they are assumed equal to zero.
        return_input
            If true, returns both output and input. If false (the default), returns only
            the output.
        return_usage_seq
            If true, returns the `usage_seq` in addition to output (and potentially
            input).

        Returns either a single array (`Y`) if `return_input` and `return_usage_seq` are
        both false; or a tuple `(Y, X)` or `(Y, usage_sea)` if only `return_input` or
        only `return_usage_seq` is true, respectively; or a tuple `(Y, X, usage_seq)` if
        both are true. Here `Y` is an array of generated `y`; `X` contains the input `x`
        samples; and `usage_seq` is an integer array indicating which model was used at
        each time step. If the `X` parameter was used and was a sequence, the output `X`
        simply mirrors the input `X`.
        """
        # check inputs
        if n_samples is None:
            if X is None or not hasattr(X, "__len__"):
                raise ValueError("Need either n_samples or sequence U.")
            n_samples = len(X)

        # generate usage sequence, then use sample_switching_models
        usage_seq = self.smm.sample(n_samples)
        y, x = sample_switching_models(
            self.models,
            usage_seq,
            X=X,
            initial_conditions=initial_conditions,
            return_input=True,
        )

        res = (y,)
        if return_input:
            res = res + (x,)
        if return_usage_seq:
            res = res + (usage_seq,)

        if len(res) == 1:
            return res[0]
        else:
            return res

    def __repr__(self) -> str:
        r = f"ArmaHSMM(models={repr(self.models)}, smm={repr(self.smm)})"
        return r

    def __str__(self) -> str:
        s = f"ArmaHSMM(models={str(self.models)}, smm={str(self.smm)})"
        return s
Exemple #26
0
 def setUp(self):
     self.n_components = 4
     self.smm = SemiMarkov(self.n_components)
Exemple #27
0
    def test_no_error(self):
        smm = SemiMarkov(5, rng=np.random.RandomState(1))
        n = 13
        seq = smm.sample(n)

        self.assertEqual(len(seq), n)
Exemple #28
0
 def test_raises_value_error_if_dwell_times_not_below_dwell_max(self):
     with self.assertRaises(ValueError):
         SemiMarkov(2, dwell_times=[100, 10], max_dwell=20)
Exemple #29
0
 def test_raises_value_error_if_dwell_times_not_above_dwell_min(self):
     with self.assertRaises(ValueError):
         SemiMarkov(2, dwell_times=[100, 10], min_dwell=20)