Exemple #1
0
def test_gp(constrained_search: bool, normalization: str):
    logging.basicConfig(level=logging.INFO)
    num_evaluations = 8

    Xy_train, X_test, y_test = artificial_task1()

    blackbox = Blackbox(
        input_dim=2,
        output_dim=1,
        eval_fun=lambda x: x.sum(axis=-1, keepdims=True),
    )

    optimizer = GP(
        input_dim=blackbox.input_dim,
        output_dim=blackbox.output_dim,
        normalization=normalization,
    )

    candidates = X_test

    for i in range(num_evaluations):
        x = optimizer.sample(
            candidates) if constrained_search else optimizer.sample()
        y = blackbox(x)
        logging.info(f"criterion {y} for arguments {x}")
        optimizer.observe(x=x, y=y)
Exemple #2
0
def test_smoke_optimizers(optimizer_cls, constrained_search: bool):
    logging.basicConfig(level=logging.INFO)
    num_evaluations = 10

    blackbox = Blackbox(
        input_dim=2,
        output_dim=1,
        eval_fun=lambda x: x.sum(axis=-1, keepdims=True),
    )

    optimizer = optimizer_cls(
        input_dim=blackbox.input_dim,
        output_dim=blackbox.output_dim,
        evaluations_other_tasks=Xy_train,
    )

    candidates = X_test

    for i in range(num_evaluations):
        if constrained_search:
            x = optimizer.sample(candidates)
        else:
            x = optimizer.sample()
        y = blackbox(x)
        logging.info(f"criterion {y} for arguments {x}")
        optimizer.observe(x=x, y=y)
Exemple #3
0
 def __init__(self,length=5,speed=0,location=0,
              current_time=0,road=None,number=-1):
     self.number = number
     self.length = length
     self.speed = speed
     self.location = location
     self.next_car = 0
     self.max_speed = (100/3) #meters/second
     self.distance_from_car_ahead = 0
     self.blackbox = Blackbox(-1,self.location,self.speed)
     self.road = road
     self.road_length = len(self.road.road)
Exemple #4
0
class BlackboxSmsBackend(BaseSmsBackend):
    api_key = settings.BLACKBOX_API_KEY
    api_signature = settings.BLACKBOX_API_SIGNATURE
    shortcode = settings.BLACKBOX_SHORT_CODE
    keyword = settings.BLACKBOX_KEYWORD

    blackbox = Blackbox(api_key, api_signature)

    def send_messages(self, messages):
        for message in messages:
            for to in message.to:
                try:
                    self.blackbox.queue_sms(to, message.body, self.shortcode,
                                            self.keyword)
                    self.blackbox.send_sms()

                except:
                    if not self.fail_silently:
                        raise
Exemple #5
0
import sys
import os
sys.path.append("ML/")
from blackbox import Blackbox
from annoy1 import save_to_annoy
from time import time

model = Blackbox(1)


def test_detection():
    assert model.send_picture('tests/1_test.jpg')[0] == [7]
    assert model.send_picture('tests/2_test.jpg') is None


def test_annoy_save():
    save_to_annoy(10, ann_path='tests/stars_embeddings.ann')
    assert time() - os.stat('tests/stars_embeddings.ann')[8] < 10
Exemple #6
0
    dur_time = round(time.time() - start, 4)
    add_log(time.asctime(), event.user_id, event.message, resp, dur_time)


if __name__ == '__main__':
    token = "01e71dc0db9523a795691bcdc5f346b834b2138deb7d6591b14af99e78ffe3119001c950623abb1edae46"

    vk = vk_api.VkApi(token=token)

    longpoll = VkLongPoll(vk)
    keyboard = VkKeyboard(one_time=True)

    keyboard.add_button(u'Ты ошибся...', color=VkKeyboardColor.NEGATIVE)
    keyboard.add_button(u'Да это я! Похож!', color=VkKeyboardColor.POSITIVE)

    box = Blackbox(1)

    for event in longpoll.listen():
        if event.type == VkEventType.MESSAGE_NEW and event.to_me:
            start = time.time()
            attach_data = event.attachments
            if attach_data:
                if len(attach_data) == 2:
                    if attach_data["attach1_type"] == "photo":
                        write_msg(event.user_id,
                                  u"Фото принято, обрабатываю...")
                        upload_photo(event.message_id)
                        indxs = box.send_picture("test.jpg")
                        if indxs is None:
                            resp = u"На фото я не вижу лиц."
                            write_msg(event.user_id, resp)
Exemple #7
0
                return candidate[0]
            else:
                # (N,)
                ei = acq(torch.Tensor(candidates).unsqueeze(dim=-2))
                return torch.Tensor(candidates[ei.argmax()])


if __name__ == '__main__':
    logging.basicConfig(level=logging.INFO)
    num_evaluations = 10

    Xy_train, X_test, y_test = artificial_task1()

    blackbox = Blackbox(
        input_dim=2,
        output_dim=1,
        eval_fun=lambda x: x.sum(axis=-1, keepdims=True),
    )

    optimizer = G3P(
        input_dim=blackbox.input_dim,
        output_dim=blackbox.output_dim,
        evaluations_other_tasks=Xy_train,
        num_gradient_updates=2,
    )

    candidates = X_test

    for i in range(num_evaluations):
        x = optimizer.sample(candidates)
        #x = optimizer.sample()
import psycopg2

import xmltodict
from blackbox import Blackbox

# Loop which will retrieve all subscribers which haven't 
# acknowledged message receipt for the day, then send a 
# message through the shortcode they're associated with. 

# Setup API credentials
api_key = "af23046bff4abfc22ffb21fa57c7a9ee" 
# Check under Settings->API Keys in Blackbox
api_signature = "QeWgu7HTnlE+3nOy4mSvZcyumvC1CFTp53OF7/a0o9jDAkbNwxEyyRQHJCUl3+xqsCF6Og/38fnR+cyugaCaBZoeKQZsSKXYfVJ3lQPNhNBcs7QNUWaHb+z7umdlA/OiwVzFWKtY7pwbOAwErkAXkq3Z+74ZWzFYOCfFxiyKKLk=" # Check under Settings->API Keys in Blackbox
# Make API request
blackbox = Blackbox(api_key, api_signature) # Instantiate API library

print('Establishing database connection...')
conn = psycopg2.connect(database="blackbox", 
						user="******", 
						password="******", 
						host="blackbox.c5oicakkxsxn.us-west-2.rds.amazonaws.com", 
						port="5432")

print("Database connection established.")
conn.set_session(autocommit=True)
cur = conn.cursor()

# Select subscriber number, shortcode, and keyword from blackbox.subscribers
sql = "SELECT DISTINCT subscriber, shortcode, keyword from subscribers where active_subscriber = 'true' and sent_today = 'false';"
cur.execute(sql)