def __init__(self, redis: StrictRedis, es: Elasticsearch):
     self.es = es
     self.cache_manager = RedisCacheManager(
         state_class=LogEventsScrollState,
         redis=redis,
         expiration_interval=self.state_expiration_sec,
     )
Exemple #2
0
 def __init__(self, redis: StrictRedis, es: Elasticsearch):
     self.es = es
     self.cache_manager = RedisCacheManager(
         state_class=DebugImageEventsScrollState,
         redis=redis,
         expiration_interval=self.STATE_EXPIRATION_SECONDS,
     )
Exemple #3
0
class DebugImagesIterator:
    EVENT_TYPE = "training_debug_image"

    @property
    def state_expiration_sec(self):
        return config.get(
            f"services.events.events_retrieval.state_expiration_sec", 3600
        )

    @property
    def _max_workers(self):
        return config.get("services.events.max_metrics_concurrency", 4)

    def __init__(self, redis: StrictRedis, es: Elasticsearch):
        self.es = es
        self.cache_manager = RedisCacheManager(
            state_class=DebugImageEventsScrollState,
            redis=redis,
            expiration_interval=self.state_expiration_sec,
        )

    def get_task_events(
        self,
        company_id: str,
        metrics: Sequence[Tuple[str, str]],
        iter_count: int,
        navigate_earlier: bool = True,
        refresh: bool = False,
        state_id: str = None,
    ) -> DebugImagesResult:
        es_index = EventMetrics.get_index_name(company_id, self.EVENT_TYPE)
        if not self.es.indices.exists(es_index):
            return DebugImagesResult()

        def init_state(state_: DebugImageEventsScrollState):
            unique_metrics = set(metrics)
            state_.metrics = self._init_metric_states(es_index, list(unique_metrics))

        def validate_state(state_: DebugImageEventsScrollState):
            """
            Validate that the metrics stored in the state are the same
            as requested in the current call.
            Refresh the state if requested
            """
            state_metrics = set((m.task, m.name) for m in state_.metrics)
            if state_metrics != set(metrics):
                raise errors.bad_request.InvalidScrollId(
                    "Task metrics stored in the state do not match the passed ones",
                    scroll_id=state_.id,
                )
            if refresh:
                self._reinit_outdated_metric_states(company_id, es_index, state_)
                for metric_state in state_.metrics:
                    metric_state.reset()

        with self.cache_manager.get_or_create_state(
            state_id=state_id, init_state=init_state, validate_state=validate_state
        ) as state:
            res = DebugImagesResult(next_scroll_id=state.id)
            with ThreadPoolExecutor(self._max_workers) as pool:
                res.metric_events = list(
                    pool.map(
                        partial(
                            self._get_task_metric_events,
                            es_index=es_index,
                            iter_count=iter_count,
                            navigate_earlier=navigate_earlier,
                        ),
                        state.metrics,
                    )
                )

            return res

    def _reinit_outdated_metric_states(
        self, company_id, es_index, state: DebugImageEventsScrollState
    ):
        """
        Determines the metrics for which new debug image events were added
        since their states were initialized and reinits these states
        """
        task_ids = set(metric.task for metric in state.metrics)
        tasks = Task.objects(id__in=list(task_ids), company=company_id).only(
            "id", "metric_stats"
        )

        def get_last_update_times_for_task_metrics(task: Task) -> Sequence[Tuple]:
            """For metrics that reported debug image events get tuples of task_id/metric_name and last update times"""
            metric_stats: Mapping[str, MetricEventStats] = task.metric_stats
            if not metric_stats:
                return []

            return [
                (
                    (task.id, stats.metric),
                    stats.event_stats_by_type[self.EVENT_TYPE].last_update,
                )
                for stats in metric_stats.values()
                if self.EVENT_TYPE in stats.event_stats_by_type
            ]

        update_times = dict(
            chain.from_iterable(
                get_last_update_times_for_task_metrics(task) for task in tasks
            )
        )
        outdated_metrics = [
            metric
            for metric in state.metrics
            if (metric.task, metric.name) in update_times
            and update_times[metric.task, metric.name] > metric.timestamp
        ]
        state.metrics = [
            *(metric for metric in state.metrics if metric not in outdated_metrics),
            *(
                self._init_metric_states(
                    es_index,
                    [(metric.task, metric.name) for metric in outdated_metrics],
                )
            ),
        ]

    def _init_metric_states(
        self, es_index, metrics: Sequence[Tuple[str, str]]
    ) -> Sequence[MetricScrollState]:
        """
        Returned initialized metric scroll stated for the requested task metrics
        """
        tasks = defaultdict(list)
        for (task, metric) in metrics:
            tasks[task].append(metric)

        with ThreadPoolExecutor(self._max_workers) as pool:
            return list(
                chain.from_iterable(
                    pool.map(
                        partial(self._init_metric_states_for_task, es_index=es_index),
                        tasks.items(),
                    )
                )
            )

    def _init_metric_states_for_task(
        self, task_metrics: Tuple[str, Sequence[str]], es_index
    ) -> Sequence[MetricScrollState]:
        """
        Return metric scroll states for the task filled with the variant states
        for the variants that reported any debug images
        """
        task, metrics = task_metrics
        es_req: dict = {
            "size": 0,
            "query": {
                "bool": {
                    "must": [
                        {"term": {"task": task}},
                        {"terms": {"metric": metrics}},
                        {"exists": {"field": "url"}},
                    ]
                }
            },
            "aggs": {
                "metrics": {
                    "terms": {
                        "field": "metric",
                        "size": EventMetrics.MAX_METRICS_COUNT,
                    },
                    "aggs": {
                        "last_event_timestamp": {"max": {"field": "timestamp"}},
                        "variants": {
                            "terms": {
                                "field": "variant",
                                "size": EventMetrics.MAX_VARIANTS_COUNT,
                            },
                            "aggs": {
                                "urls": {
                                    "terms": {
                                        "field": "url",
                                        "order": {"max_iter": "desc"},
                                        "size": 1,  # we need only one url from the most recent iteration
                                    },
                                    "aggs": {
                                        "max_iter": {"max": {"field": "iter"}},
                                        "iters": {
                                            "top_hits": {
                                                "sort": {"iter": {"order": "desc"}},
                                                "size": 2,  # need two last iterations so that we can take
                                                # the second one as invalid
                                                "_source": "iter",
                                            }
                                        },
                                    },
                                }
                            },
                        },
                    },
                }
            },
        }

        with translate_errors_context(), TimingContext("es", "_init_metric_states"):
            es_res = self.es.search(index=es_index, body=es_req)
        if "aggregations" not in es_res:
            return []

        def init_variant_scroll_state(variant: dict):
            """
            Return new variant scroll state for the passed variant bucket
            If the image urls get recycled then fill the last_invalid_iteration field
            """
            state = VariantScrollState(name=variant["key"])
            top_iter_url = dpath.get(variant, "urls/buckets")[0]
            iters = dpath.get(top_iter_url, "iters/hits/hits")
            if len(iters) > 1:
                state.last_invalid_iteration = dpath.get(iters[1], "_source/iter")
            return state

        return [
            MetricScrollState(
                task=task,
                name=metric["key"],
                variants=[
                    init_variant_scroll_state(variant)
                    for variant in dpath.get(metric, "variants/buckets")
                ],
                timestamp=dpath.get(metric, "last_event_timestamp/value"),
            )
            for metric in dpath.get(es_res, "aggregations/metrics/buckets")
        ]

    def _get_task_metric_events(
        self,
        metric: MetricScrollState,
        es_index: str,
        iter_count: int,
        navigate_earlier: bool,
    ) -> Tuple:
        """
        Return task metric events grouped by iterations
        Update metric scroll state
        """
        if metric.last_max_iter is None:
            # the first fetch is always from the latest iteration to the earlier ones
            navigate_earlier = True

        must_conditions = [
            {"term": {"task": metric.task}},
            {"term": {"metric": metric.name}},
            {"exists": {"field": "url"}},
        ]
        must_not_conditions = []

        range_condition = None
        if navigate_earlier and metric.last_min_iter is not None:
            range_condition = {"lt": metric.last_min_iter}
        elif not navigate_earlier and metric.last_max_iter is not None:
            range_condition = {"gt": metric.last_max_iter}
        if range_condition:
            must_conditions.append({"range": {"iter": range_condition}})

        if navigate_earlier:
            """
            When navigating to earlier iterations consider only
            variants whose invalid iterations border is lower than
            our starting iteration. For these variants make sure
            that only events from the valid iterations are returned 
            """
            if not metric.last_min_iter:
                variants = metric.variants
            else:
                variants = list(
                    v
                    for v in metric.variants
                    if v.last_invalid_iteration is None
                    or v.last_invalid_iteration < metric.last_min_iter
                )
                if not variants:
                    return metric.task, metric.name, []
                must_conditions.append(
                    {"terms": {"variant": list(v.name for v in variants)}}
                )
        else:
            """
            When navigating to later iterations all variants may be relevant.
            For the variants whose invalid border is higher than our starting 
            iteration make sure that only events from valid iterations are returned 
            """
            variants = list(
                v
                for v in metric.variants
                if v.last_invalid_iteration is not None
                and v.last_invalid_iteration > metric.last_max_iter
            )

        variants_conditions = [
            {
                "bool": {
                    "must": [
                        {"term": {"variant": v.name}},
                        {"range": {"iter": {"lte": v.last_invalid_iteration}}},
                    ]
                }
            }
            for v in variants
            if v.last_invalid_iteration is not None
        ]
        if variants_conditions:
            must_not_conditions.append({"bool": {"should": variants_conditions}})

        es_req = {
            "size": 0,
            "query": {
                "bool": {"must": must_conditions, "must_not": must_not_conditions}
            },
            "aggs": {
                "iters": {
                    "terms": {
                        "field": "iter",
                        "size": iter_count,
                        "order": {"_key": "desc" if navigate_earlier else "asc"},
                    },
                    "aggs": {
                        "variants": {
                            "terms": {
                                "field": "variant",
                                "size": EventMetrics.MAX_VARIANTS_COUNT,
                            },
                            "aggs": {
                                "events": {
                                    "top_hits": {"sort": {"url": {"order": "desc"}}}
                                }
                            },
                        }
                    },
                }
            },
        }
        with translate_errors_context(), TimingContext("es", "get_debug_image_events"):
            es_res = self.es.search(index=es_index, body=es_req)
        if "aggregations" not in es_res:
            return metric.task, metric.name, []

        def get_iteration_events(variant_buckets: Sequence[dict]) -> Sequence:
            return [
                ev["_source"]
                for v in variant_buckets
                for ev in dpath.get(v, "events/hits/hits")
            ]

        iterations = [
            {
                "iter": it["key"],
                "events": get_iteration_events(dpath.get(it, "variants/buckets")),
            }
            for it in dpath.get(es_res, "aggregations/iters/buckets")
        ]
        if not navigate_earlier:
            iterations.sort(key=itemgetter("iter"), reverse=True)
        if iterations:
            metric.last_max_iter = iterations[0]["iter"]
            metric.last_min_iter = iterations[-1]["iter"]

        # Commented for now since the last invalid iteration is calculated in the beginning
        # if navigate_earlier and any(
        #     variant.last_invalid_iteration is None for variant in variants
        # ):
        #     """
        #     Variants validation flags due to recycling can
        #     be set only on navigation to earlier frames
        #     """
        #     iterations = self._update_variants_invalid_iterations(variants, iterations)

        return metric.task, metric.name, iterations

    @staticmethod
    def _update_variants_invalid_iterations(
        variants: Sequence[VariantScrollState], iterations: Sequence[dict]
    ) -> Sequence[dict]:
        """
        This code is currently not in used since the invalid iterations
        are calculated during MetricState initialization
        For variants that do not have recycle url marker set it from the
        first event
        For variants that do not have last_invalid_iteration set check if the
        recycle marker was reached on a certain iteration and set it to the
        corresponding iteration
        For variants that have a newly set last_invalid_iteration remove
        events from the invalid iterations
        Return the updated iterations list
        """
        variants_lookup = bucketize(variants, attrgetter("name"))
        for it in iterations:
            iteration = it["iter"]
            events_to_remove = []
            for event in it["events"]:
                variant = variants_lookup[event["variant"]][0]
                if (
                    variant.last_invalid_iteration
                    and variant.last_invalid_iteration >= iteration
                ):
                    events_to_remove.append(event)
                    continue
                event_url = event.get("url")
                if not variant.recycle_url_marker:
                    variant.recycle_url_marker = event_url
                elif variant.recycle_url_marker == event_url:
                    variant.last_invalid_iteration = iteration
                    events_to_remove.append(event)
            if events_to_remove:
                it["events"] = [ev for ev in it["events"] if ev not in events_to_remove]
        return [it for it in iterations if it["events"]]
class LogEventsIterator:
    EVENT_TYPE = "log"

    @property
    def state_expiration_sec(self):
        return config.get(
            f"services.events.events_retrieval.state_expiration_sec", 3600
        )

    def __init__(self, redis: StrictRedis, es: Elasticsearch):
        self.es = es
        self.cache_manager = RedisCacheManager(
            state_class=LogEventsScrollState,
            redis=redis,
            expiration_interval=self.state_expiration_sec,
        )

    def get_task_events(
        self,
        company_id: str,
        task_id: str,
        batch_size: int,
        navigate_earlier: bool = True,
        refresh: bool = False,
        state_id: str = None,
    ) -> TaskEventsResult:
        es_index = EventMetrics.get_index_name(company_id, self.EVENT_TYPE)
        if not self.es.indices.exists(es_index):
            return TaskEventsResult()

        def init_state(state_: LogEventsScrollState):
            state_.task = task_id

        def validate_state(state_: LogEventsScrollState):
            """
            Checks that the task id stored in the state
            is equal to the one passed with the current call
            Refresh the state if requested
            """
            if state_.task != task_id:
                raise errors.bad_request.InvalidScrollId(
                    "Task stored in the state does not match the passed one",
                    scroll_id=state_.id,
                )
            if refresh:
                state_.reset()

        with self.cache_manager.get_or_create_state(
            state_id=state_id, init_state=init_state, validate_state=validate_state,
        ) as state:
            res = TaskEventsResult(next_scroll_id=state.id)
            res.events, res.total_events = self._get_events(
                es_index=es_index,
                batch_size=batch_size,
                navigate_earlier=navigate_earlier,
                state=state,
            )
            return res

    def _get_events(
        self,
        es_index,
        batch_size: int,
        navigate_earlier: bool,
        state: LogEventsScrollState,
    ) -> Tuple[Sequence[dict], int]:
        """
        Return up to 'batch size' events starting from the previous timestamp either in the
        direction of earlier events (navigate_earlier=True) or in the direction of later events.
        If last_min_timestamp and last_max_timestamp are not set then start either from latest or earliest.
        For the last timestamp all the events are brought (even if the resulting size
        exceeds batch_size) so that this timestamp events will not be lost between the calls.
        In case any events were received update 'last_min_timestamp' and 'last_max_timestamp'
        """

        # retrieve the next batch of events
        es_req = {
            "size": batch_size,
            "query": {"term": {"task": state.task}},
            "sort": {"timestamp": "desc" if navigate_earlier else "asc"},
        }

        if navigate_earlier and state.last_min_timestamp is not None:
            es_req["search_after"] = [state.last_min_timestamp]
        elif not navigate_earlier and state.last_max_timestamp is not None:
            es_req["search_after"] = [state.last_max_timestamp]

        with translate_errors_context(), TimingContext("es", "get_task_events"):
            es_result = self.es.search(index=es_index, body=es_req, routing=state.task)
            hits = es_result["hits"]["hits"]
            hits_total = es_result["hits"]["total"]
            if not hits:
                return [], hits_total

            events = [hit["_source"] for hit in hits]
            if navigate_earlier:
                state.last_max_timestamp = events[0]["timestamp"]
                state.last_min_timestamp = events[-1]["timestamp"]
            else:
                state.last_min_timestamp = events[0]["timestamp"]
                state.last_max_timestamp = events[-1]["timestamp"]

            # retrieve the events that match the last event timestamp
            # but did not make it into the previous call due to batch_size limitation
            es_req = {
                "size": 10000,
                "query": {
                    "bool": {
                        "must": [
                            {"term": {"task": state.task}},
                            {"term": {"timestamp": events[-1]["timestamp"]}},
                        ]
                    }
                },
            }
            es_result = self.es.search(index=es_index, body=es_req, routing=state.task)
            hits = es_result["hits"]["hits"]
            if not hits or len(hits) < 2:
                # if only one element is returned for the last timestamp
                # then it is already present in the events
                return events, hits_total

            last_events = [hit["_source"] for hit in es_result["hits"]["hits"]]
            already_present_ids = set(ev["_id"] for ev in events)

            # return the list merged from original query results +
            # leftovers from the last timestamp
            return (
                [
                    *events,
                    *(ev for ev in last_events if ev["_id"] not in already_present_ids),
                ],
                hits_total,
            )