def __init__(self, dimension, alphabet_size, **kwargs):
        super(WordReverser, self).__init__(**kwargs)
        encoder = Bidirectional(
            SimpleRecurrent(dim=dimension, activation=Tanh()))
        fork = Fork([name for name in encoder.prototype.apply.sequences
                    if name != 'mask'])
        fork.input_dim = dimension
        fork.output_dims = [encoder.prototype.get_dim(name) for name in fork.input_names]
        lookup = LookupTable(alphabet_size, dimension)
        transition = SimpleRecurrent(
            activation=Tanh(),
            dim=dimension, name="transition")
        attention = SequenceContentAttention(
            state_names=transition.apply.states,
            attended_dim=2 * dimension, match_dim=dimension, name="attention")
        readout = Readout(
            readout_dim=alphabet_size,
            source_names=[transition.apply.states[0],
                          attention.take_glimpses.outputs[0]],
            emitter=SoftmaxEmitter(name="emitter"),
            feedback_brick=LookupFeedback(alphabet_size, dimension),
            name="readout")
        generator = SequenceGenerator(
            readout=readout, transition=transition, attention=attention,
            name="generator")

        self.lookup = lookup
        self.fork = fork
        self.encoder = encoder
        self.generator = generator
        self.children = [lookup, fork, encoder, generator]
Exemple #2
0
    def __init__(self, dimension, alphabet_size, **kwargs):
        super(WordReverser, self).__init__(**kwargs)
        encoder = Bidirectional(
            SimpleRecurrent(dim=dimension, activation=Tanh()))
        fork = Fork([name for name in encoder.prototype.apply.sequences
                    if name != 'mask'])
        fork.input_dim = dimension
        fork.output_dims = [dimension for name in fork.input_names]
        lookup = LookupTable(alphabet_size, dimension)
        transition = SimpleRecurrent(
            activation=Tanh(),
            dim=dimension, name="transition")
        attention = SequenceContentAttention(
            state_names=transition.apply.states,
            attended_dim=2 * dimension, match_dim=dimension, name="attention")
        readout = Readout(
            readout_dim=alphabet_size,
            source_names=[transition.apply.states[0],
                          attention.take_glimpses.outputs[0]],
            emitter=SoftmaxEmitter(name="emitter"),
            feedback_brick=LookupFeedback(alphabet_size, dimension),
            name="readout")
        generator = SequenceGenerator(
            readout=readout, transition=transition, attention=attention,
            name="generator")

        self.lookup = lookup
        self.fork = fork
        self.encoder = encoder
        self.generator = generator
        self.children = [lookup, fork, encoder, generator]
Exemple #3
0
	def __init__(self, dimen, vocab_size): #{
		# No idea what this is doing, but otherwise "allocated" is not set
		super(MorphGen, self).__init__(self)

		# The encoder 
		encoder = Bidirectional(SimpleRecurrent(dim=dimen, activation=Tanh()))

		# What is this doing ? 
		fork = Fork([name for name in encoder.prototype.apply.sequences if name != 'mask'])
		fork.input_dim = dimen
		fork.output_dims = [encoder.prototype.get_dim(name) for name in fork.input_names]

		lookup = LookupTable(vocab_size, dimen)

		transition = SimpleRecurrent(dim=dimen, activation=Tanh(), name="transition")

		atten = SequenceContentAttention(state_names=transition.apply.states,attended_dim=2*dimen, match_dim=dimen, name="attention")

		readout = Readout(
			readout_dim=vocab_size,
			source_names=[transition.apply.states[0],
			atten.take_glimpses.outputs[0]],
			emitter=SoftmaxEmitter(name="emitter"),
			feedback_brick=LookupFeedback(vocab_size, dimen),
			name="readout");

		generator = SequenceGenerator(readout=readout, transition=transition, attention=atten,name="generator")
	
		self.lookup = lookup
		self.fork = fork
		self.encoder = encoder
		self.generator = generator
		self.children = [lookup, fork, encoder, generator]
Exemple #4
0
    def __init__(self,
                 dimension,
                 input_size,
                 rnn_type=None,
                 embed_input=False,
                 **kwargs):
        super(Encoder, self).__init__(**kwargs)
        if rnn_type is None:
            rnn_type = SimpleRecurrent
        if embed_input:
            self.embedder = LookupTable(input_size, dimension)
        else:
            self.embedder = Linear(input_size, dimension)
        encoder = Bidirectional(rnn_type(dim=dimension, activation=Tanh()))
        fork = Fork([
            name for name in encoder.prototype.apply.sequences
            if name != 'mask'
        ])
        fork.input_dim = dimension
        fork.output_dims = [dimension for _ in fork.input_names]

        self.fork = fork
        self.encoder = encoder
        self.children = [fork, encoder, self.embedder]
Exemple #5
0
def main(mode, save_path, num_batches, data_path=None):
    # Experiment configuration
    dimension = 100
    readout_dimension = len(char2code)

    # Build bricks
    encoder = Bidirectional(SimpleRecurrent(dim=dimension, activation=Tanh()),
                            weights_init=Orthogonal())
    fork = Fork(
        [name for name in encoder.prototype.apply.sequences if name != 'mask'],
        weights_init=IsotropicGaussian(0.1),
        biases_init=Constant(0))
    fork.input_dim = dimension
    fork.output_dims = {name: dimension for name in fork.input_names}
    lookup = LookupTable(readout_dimension,
                         dimension,
                         weights_init=IsotropicGaussian(0.1))
    transition = SimpleRecurrent(activation=Tanh(),
                                 dim=dimension,
                                 name="transition")
    attention = SequenceContentAttention(state_names=transition.apply.states,
                                         sequence_dim=2 * dimension,
                                         match_dim=dimension,
                                         name="attention")
    readout = LinearReadout(readout_dim=readout_dimension,
                            source_names=["states"],
                            emitter=SoftmaxEmitter(name="emitter"),
                            feedbacker=LookupFeedback(readout_dimension,
                                                      dimension),
                            name="readout")
    generator = SequenceGenerator(readout=readout,
                                  transition=transition,
                                  attention=attention,
                                  weights_init=IsotropicGaussian(0.1),
                                  biases_init=Constant(0),
                                  name="generator")
    generator.push_initialization_config()
    transition.weights_init = Orthogonal()

    if mode == "train":
        # Data processing pipeline
        dataset_options = dict(dictionary=char2code,
                               level="character",
                               preprocess=_lower)
        if data_path:
            dataset = TextFile(data_path, **dataset_options)
        else:
            dataset = OneBillionWord("training", [99], **dataset_options)
        data_stream = DataStreamMapping(
            mapping=_transpose,
            data_stream=PaddingDataStream(
                BatchDataStream(
                    iteration_scheme=ConstantScheme(10),
                    data_stream=DataStreamMapping(
                        mapping=reverse_words,
                        add_sources=("targets", ),
                        data_stream=DataStreamFilter(
                            predicate=_filter_long,
                            data_stream=dataset.get_default_stream())))))

        # Build the cost computation graph
        chars = tensor.lmatrix("features")
        chars_mask = tensor.matrix("features_mask")
        targets = tensor.lmatrix("targets")
        targets_mask = tensor.matrix("targets_mask")
        batch_cost = generator.cost(
            targets,
            targets_mask,
            attended=encoder.apply(**dict_union(fork.apply(
                lookup.lookup(chars), return_dict=True),
                                                mask=chars_mask)),
            attended_mask=chars_mask).sum()
        batch_size = named_copy(chars.shape[1], "batch_size")
        cost = aggregation.mean(batch_cost, batch_size)
        cost.name = "sequence_log_likelihood"
        logger.info("Cost graph is built")

        # Give an idea of what's going on
        model = Model(cost)
        params = model.get_params()
        logger.info("Parameters:\n" +
                    pprint.pformat([(key, value.get_value().shape)
                                    for key, value in params.items()],
                                   width=120))

        # Initialize parameters
        for brick in model.get_top_bricks():
            brick.initialize()

        # Fetch variables useful for debugging
        max_length = named_copy(chars.shape[0], "max_length")
        cost_per_character = named_copy(
            aggregation.mean(batch_cost, batch_size * max_length),
            "character_log_likelihood")
        cg = ComputationGraph(cost)
        (energies, ) = VariableFilter(application=readout.readout,
                                      name="output")(cg.variables)
        min_energy = named_copy(energies.min(), "min_energy")
        max_energy = named_copy(energies.max(), "max_energy")
        (activations, ) = VariableFilter(
            application=generator.transition.apply,
            name="states")(cg.variables)
        mean_activation = named_copy(
            abs(activations).mean(), "mean_activation")

        # Define the training algorithm.
        algorithm = GradientDescent(cost=cost,
                                    step_rule=CompositeRule(
                                        [StepClipping(10.0),
                                         Scale(0.01)]))

        # More variables for debugging
        observables = [
            cost, min_energy, max_energy, mean_activation, batch_size,
            max_length, cost_per_character, algorithm.total_step_norm,
            algorithm.total_gradient_norm
        ]
        for name, param in params.items():
            observables.append(named_copy(param.norm(2), name + "_norm"))
            observables.append(
                named_copy(algorithm.gradients[param].norm(2),
                           name + "_grad_norm"))

        # Construct the main loop and start training!
        average_monitoring = TrainingDataMonitoring(observables,
                                                    prefix="average",
                                                    every_n_batches=10)
        main_loop = MainLoop(
            model=model,
            data_stream=data_stream,
            algorithm=algorithm,
            extensions=[
                Timing(),
                TrainingDataMonitoring(observables, after_every_batch=True),
                average_monitoring,
                FinishAfter(after_n_batches=num_batches).add_condition(
                    "after_batch", _is_nan),
                Plot(os.path.basename(save_path),
                     [[average_monitoring.record_name(cost)],
                      [average_monitoring.record_name(cost_per_character)]],
                     every_n_batches=10),
                SerializeMainLoop(save_path,
                                  every_n_batches=500,
                                  save_separately=["model", "log"]),
                Printing(every_n_batches=1)
            ])
        main_loop.run()
    elif mode == "test":
        logger.info("Model is loaded")
        chars = tensor.lmatrix("features")
        generated = generator.generate(
            n_steps=3 * chars.shape[0],
            batch_size=chars.shape[1],
            attended=encoder.apply(**dict_union(
                fork.apply(lookup.lookup(chars), return_dict=True))),
            attended_mask=tensor.ones(chars.shape))
        model = Model(generated)
        model.set_param_values(load_parameter_values(save_path))
        sample_function = model.get_theano_function()
        logging.info("Sampling function is compiled")

        while True:
            # Python 2-3 compatibility
            line = input("Enter a sentence\n")
            batch_size = int(input("Enter a number of samples\n"))
            encoded_input = [
                char2code.get(char, char2code["<UNK>"])
                for char in line.lower().strip()
            ]
            encoded_input = ([char2code['<S>']] + encoded_input +
                             [char2code['</S>']])
            print("Encoder input:", encoded_input)
            target = reverse_words((encoded_input, ))[0]
            print("Target: ", target)
            states, samples, glimpses, weights, costs = sample_function(
                numpy.repeat(numpy.array(encoded_input)[:, None],
                             batch_size,
                             axis=1))

            messages = []
            for i in range(samples.shape[1]):
                sample = list(samples[:, i])
                try:
                    true_length = sample.index(char2code['</S>']) + 1
                except ValueError:
                    true_length = len(sample)
                sample = sample[:true_length]
                cost = costs[:true_length, i].sum()
                message = "({})".format(cost)
                message += "".join(code2char[code] for code in sample)
                if sample == target:
                    message += " CORRECT!"
                messages.append((cost, message))
            messages.sort(key=operator.itemgetter(0), reverse=True)
            for _, message in messages:
                print(message)