Exemple #1
0
def get_model(args):
    global reg
    reg = args.reg

    input_img = Input((3, 32, 32))
    x = input_img

    x = SCL(BN(x))
    x = C(x, 128, 7, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = SCRES(x, 128, 16)

    x = SCL(BN(x))
    x = D(x, 3, 7, 2)

    x = SCL(x)

    return Model(input_img, x)
Exemple #2
0
def get_model(args):
    global reg
    reg = args.reg

    def RB(x):
        for _ in range(4):
            x = SCRES(x, 128, 64)
        return x
    
    input_img = Input((3,32,32))
    x = input_img

    x = SCL(BN(x))
    x = C(x, 128, 7, 2)

    x = RB(x)
    
    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = RB(x)
    
    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = RB(x)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCL(BN(x))
    x = C(x, 128, 3, 2)

    x = SCL(BN(x), name="bottleneck")
    
    x = D(x, 128, 3, 2)

    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = RB(x)
    
    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = RB(x)
        
    x = SCL(BN(x))
    x = D(x, 128, 3, 2)

    x = RB(x)
    
    x = SCL(BN(x))
    x = D(x, 3, 7, 2)

    x = SCL(x)

    return Model(input_img, x)
Exemple #3
0
    def __init__(self, classes=20, p=5, q=3):
        '''
        :param classes: number of classes in the dataset. Default is 20 for the cityscapes
        :param p: depth multiplier
        :param q: depth multiplier
        '''
        super(ESPNetEncoder, self).__init__()
        self.level1 = CBR(3, 16, 3, 2)
        self.sample1 = InputProjectionA(1)
        self.sample2 = InputProjectionA(2)

        self.b1 = BR(16 + 3)
        self.level2_0 = DownSamplerB(16 + 3, 64)

        self.level2 = nn.ModuleList()
        for i in range(0, p):
            self.level2.append(DilatedParallelResidualBlockB(64, 64))
        self.b2 = BR(128 + 3)

        self.level3_0 = DownSamplerB(128 + 3, 128)
        self.level3 = nn.ModuleList()
        for i in range(0, q):
            self.level3.append(DilatedParallelResidualBlockB(128, 128))
        self.b3 = BR(256)

        self.classifier = C(256, classes, 1, 1)
Exemple #4
0
def get_model(args):
    global reg
    reg = args.reg

    input_img = Input((3, 32, 32))
    x = input_img

    x = R(BN(x))
    x = C(x, 128, 7, 2)

    x = R(BN(x))
    x = C(x, 128, 3, 2)

    x = R(BN(x))
    x = C(x, 128, 3, 2)

    x = R(BN(x))
    x = C(x, 128, 3, 2)

    x = R(BN(x))
    x = C(x, 128, 3, 2)

    x = R(BN(x))
    x = D(x, 128, 3, 2)

    x = R(BN(x))
    x = D(x, 128, 3, 2)

    x = R(BN(x))
    x = D(x, 128, 3, 2)

    x = R(BN(x))
    x = D(x, 128, 3, 2)

    x = R(BN(x))
    x = D(x, 3, 7, 2)

    x = Lambda(lambda x: clip(x, -2.5, 2.5) + 0.001 * x)(x)

    return Model(input_img, x)