Exemple #1
0
def get_pretrained_weights(flags):
    save_name = os.path.join(flags.weight_dir, 'weight.pkl')

    if not os.path.exists(save_name):
        X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
        y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
        mode = tf.placeholder(tf.bool, name='mode')
        model = uabMakeNetwork_UNet.UnetModelCrop({'X': X, 'Y': y},
                                                  trainable=mode,
                                                  model_name=flags.model_name,
                                                  input_size=flags.input_size,
                                                  batch_size=flags.batch_size,
                                                  learn_rate=flags.learning_rate,
                                                  decay_step=flags.decay_step,
                                                  decay_rate=flags.decay_rate,
                                                  epochs=flags.epochs,
                                                  start_filter_num=flags.sfn)
        model.create_graph('X', class_num=flags.num_classes)
        train_vars = [v for v in tf.global_variables() if 'global_step' not in v.name]

        weight_dict = dict()

        with tf.Session() as sess:
            model.load(flags.model_dir, sess, epoch=95)
            for v in train_vars:
                theta = sess.run(v)
                weight_dict[v.name] = theta
        ersa_utils.save_file(save_name, weight_dict)
    else:
        weight_dict = ersa_utils.load_file(save_name)

    tf.reset_default_graph()
    return weight_dict
Exemple #2
0
def get_pretrained_weights(weight_dir, model_dir):
    save_name = os.path.join(weight_dir, 'weight.pkl')

    if not os.path.exists(save_name):
        X = tf.placeholder(tf.float32, shape=[None, input_size[0], input_size[1], 3], name='X')
        y = tf.placeholder(tf.int32, shape=[None, input_size[0], input_size[1], 1], name='y')
        mode = tf.placeholder(tf.bool, name='mode')
        model = uabMakeNetwork_UNet.UnetModelCrop({'X': X, 'Y': y},
                                                  trainable=mode,
                                                  input_size=input_size,
                                                  start_filter_num=32)
        model.create_graph('X', class_num=2)
        train_vars = [v for v in tf.trainable_variables()]

        weight_dict = dict()

        with tf.Session() as sess:
            model.load(model_dir, sess, epoch=95)
            for v in train_vars:
                theta = sess.run(v)
                weight_dict[v.name] = theta
        ersa_utils.save_file(save_name, weight_dict)
    else:
        weight_dict = ersa_utils.load_file(save_name)

    tf.reset_default_graph()
    return weight_dict
def evaluate_on_a_patch(
    chip_size,
    X_batch,
    pretrained_model_dir=r'/hdd/Models/UnetCrop_inria_aug_grid_PS(572, 572)_BS5_EP100_LR0.0001_DS60_DR0.1_SFN32'
):
    # experiment settings
    batch_size = 9  # mini-batch size
    learn_rate = 1e-4  # learning rate
    decay_step = 60  # learn rate dacay after 60 epochs
    decay_rate = 0.1  # learn rate decay to 0.1*before
    epochs = 100  # total number of epochs to rum
    start_filter_num = 32  # the number of filters at the first layer
    model_name = 'inria_aug_grid'  # a suffix for model name

    # make network
    # define place holder
    tf.reset_default_graph()
    X = tf.placeholder(tf.float32,
                       shape=[None, chip_size[0], chip_size[1], 3],
                       name='X')
    y = tf.placeholder(tf.int32,
                       shape=[None, chip_size[0], chip_size[1], 1],
                       name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop(
        {
            'X': X,
            'Y': y
        },
        trainable=mode,
        model_name=model_name,
        input_size=chip_size,
        batch_size=batch_size,
        learn_rate=learn_rate,
        decay_step=decay_step,
        decay_rate=decay_rate,
        epochs=epochs,
        start_filter_num=start_filter_num)
    model.create_graph('X', class_num=2)

    with tf.Session() as sess:
        init = tf.global_variables_initializer()
        sess.run(init)
        model.load(pretrained_model_dir, sess)
        pred = sess.run(model.output,
                        feed_dict={
                            model.inputs['X']: X_batch,
                            model.trainable: False
                        })
        pred = pred[0, :, :, :]
        pred = np.argmax(pred, axis=2)

    return pred
Exemple #4
0
        # make the model
        # define place holder
        X = tf.placeholder(tf.float32,
                           shape=[None, input_size[0], input_size[1], 3],
                           name='X')
        Z = tf.placeholder(tf.float32,
                           shape=[None, input_size[0], input_size[1], 3],
                           name='Z')
        y = tf.placeholder(tf.int32,
                           shape=[None, input_size[0], input_size[1], 1],
                           name='y')
        mode = tf.placeholder(tf.bool, name='mode')
        model = uabMakeNetwork_UNet.UnetModelCrop({
            'X': X,
            'Y': y
        },
                                                  trainable=mode,
                                                  input_size=input_size,
                                                  batch_size=batch_size)
        # create graph
        model.create_graph('X', class_num=2)

        # evaluate on tiles
        model.evaluate(file_list,
                       file_list_truth,
                       parent_dir,
                       parent_dir_truth,
                       input_size,
                       None,
                       batch_size,
                       img_mean,
Exemple #5
0
def main(flags):
    # make network
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({'X':X, 'Y':y},
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)          # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])         # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4], # extract all 4 channels
                                                    cSize=flags.input_size, # patch size as 572*572
                                                    numPixOverlap=int(model.get_overlap()/2),  # overlap as 92
                                                    extSave=['jpg', 'jpg', 'jpg', 'png'], # save rgb files as jpg and gt as png
                                                    isTrain=True,
                                                    gtInd=3,
                                                    pad=model.get_overlap()) # pad around the tiles
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'force_tile')
    # use first 5 tiles for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(idx, file_list, [i for i in range(6, 37)])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(idx, file_list, [i for i in range(0, 6)])

    with tf.name_scope('image_loader'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_train = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_train, flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size, dataAug='flip,rotate',
                                                          block_mean=np.append([0], img_mean))
        # no augmentation needed for validation
        dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_valid, flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size, dataAug=' ', block_mean=np.append([0], img_mean))

    # train
    start_time = time.time()

    model.train_config('X', 'Y', flags.n_train, flags.n_valid, flags.input_size, uabRepoPaths.modelPath,
                       loss_type='xent')
    model.run(train_reader=dataReader_train,
              valid_reader=dataReader_valid,
              pretrained_model_dir=None,        # train from scratch, no need to load pre-trained model
              isTrain=True,
              img_mean=img_mean,
              verb_step=100,                    # print a message every 100 step(sample)
              save_epoch=5,                     # save the model every 5 epochs
              gpu=GPU,
              tile_size=flags.tile_size,
              patch_size=flags.input_size,
              continue_dir=model.ckdir)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration/60/60))
# make network
# define place holder
X = tf.placeholder(tf.float32,
                   shape=[None, chip_size[0], chip_size[1], 3],
                   name='X')
y = tf.placeholder(tf.int32,
                   shape=[None, chip_size[0], chip_size[1], 1],
                   name='y')
mode = tf.placeholder(tf.bool, name='mode')
model = uabMakeNetwork_UNet.UnetModelCrop({
    'X': X,
    'Y': y
},
                                          trainable=mode,
                                          input_size=chip_size,
                                          batch_size=batch_size,
                                          learn_rate=learn_rate,
                                          decay_step=decay_step,
                                          decay_rate=decay_rate,
                                          epochs=epochs,
                                          start_filter_num=start_filter_num)
model.create_graph('X', class_num=2)
# If you only want to load a specific number of layers, you have to do load_weight() here
# don't give pretrained_model_dir and layers2keep when calling model.run(), that will cause problem
model.load_weights(pre_trained_model_dir, layers2keep)

# create collection
# the original file is in /ei-edl01/data/uab_datasets/inria
blCol = uab_collectionFunctions.uabCollection('inria')
opDetObj = bPreproc.uabOperTileDivide(
    255)  # inria GT has value 0 and 255, we map it back to 0 and 1
Exemple #7
0
def main(flags):
    city_list = ['austin', 'chicago', 'kitsap', 'tyrol-w', 'vienna']
    flags.llh_file_dir = flags.llh_file_dir.format(flags.finetune_city)
    weight = np.load(flags.llh_file_dir)

    # make network
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, flags.input_size[0], flags.input_size[1], 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, flags.input_size[0], flags.input_size[1], 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({'X': X, 'Y': y},
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(255)          # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif', 'Map GT to (0, 1)', [3], opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])         # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr([0, 1, 2, 4], # extract all 4 channels
                                                    cSize=flags.input_size, # patch size as 572*572
                                                    numPixOverlap=int(model.get_overlap()/2),  # overlap as 92
                                                    extSave=['jpg', 'jpg', 'jpg', 'png'], # save rgb files as jpg and gt as png
                                                    isTrain=True,
                                                    gtInd=3,
                                                    pad=model.get_overlap()) # pad around the tiles
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx_city, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'city')
    idx_tile, _ = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt', 'force_tile')
    idx = [j * 10 + i for i, j in zip(idx_city, idx_tile)]
    # use first city for validation
    filter_train = []
    filter_valid = []
    for i in range(5):
        for j in range(1, 37):
            if i != flags.finetune_city and j > 5:
                filter_train.append(j * 10 + i)
            elif i == flags.finetune_city and j <= 5:
                filter_valid.append(j * 10 + i)
    # use first city for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(idx, file_list, filter_train)
    file_list_valid = uabCrossValMaker.make_file_list_by_key(idx, file_list, filter_valid)

    dataReader_train = uabDataReader.ImageLabelReaderPatchSampleControl(
        [3], [0, 1, 2], patchDir, file_list_train, flags.input_size, flags.batch_size,
        weight, dataAug='flip,rotate', block_mean=np.append([0], img_mean))
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReader([3], [0, 1, 2], patchDir, file_list_valid, flags.input_size,
                                                      flags.batch_size, dataAug=' ',
                                                      block_mean=np.append([0], img_mean), batch_code=0)

    # train
    start_time = time.time()
    model.train_config('X', 'Y', flags.n_train, flags.n_valid, flags.input_size, uabRepoPaths.modelPath,
                       loss_type='xent', par_dir='Inria_Domain_Selection')
    model.run(train_reader=dataReader_train,
              valid_reader=dataReader_valid,
              pretrained_model_dir=flags.pred_model_dir.format(flags.finetune_city),
              isTrain=True,
              img_mean=img_mean,
              verb_step=100,  # print a message every 100 step(sample)
              save_epoch=5,  # save the model every 5 epochs
              gpu=GPU,
              tile_size=flags.tile_size,
              patch_size=flags.input_size
              )

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration/60/60))
def main(flags):
    city_dict = {
        'austin': 0,
        'chicago': 1,
        'kitsap': 2,
        'tyrol-w': 3,
        'vienna': 4
    }
    city_alpha = [0.2, 0.5, 0.1, 0.1, 0.1]

    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    y = tf.placeholder(
        tf.int32,
        shape=[None, flags.input_size[0], flags.input_size[1], 1],
        name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({
        'X': X,
        'Y': y
    },
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection('inria')
    opDetObj = bPreproc.uabOperTileDivide(
        255)  # inria GT has value 0 and 255, we map it back to 0 and 1
    # [3] is the channel id of GT
    rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
                                                     'Map GT to (0, 1)', [3],
                                                     opDetObj)
    rescObj.run(blCol)
    img_mean = blCol.getChannelMeans([0, 1, 2])  # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 4],
        cSize=flags.input_size,
        numPixOverlap=int(model.get_overlap()),
        extSave=['jpg', 'jpg', 'jpg', 'png'],
        isTrain=True,
        gtInd=3,
        pad=model.get_overlap() / 2)
    patchDir = extrObj.run(blCol)

    # make data reader
    # use uabCrossValMaker to get fileLists for training and validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                      'force_tile')
    # use first 5 tiles for validation
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(6, 37)])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [i for i in range(0, 6)])

    dataReader_train = uabDataReader.ImageLabelReaderCitySampleControl(
        [3], [0, 1, 2],
        patchDir,
        file_list_train,
        flags.input_size,
        flags.batch_size,
        city_dict,
        city_alpha,
        dataAug='flip,rotate',
        block_mean=np.append([0], img_mean))
    # no augmentation needed for validation
    dataReader_valid = uabDataReader.ImageLabelReaderCitySampleControl(
        [3], [0, 1, 2],
        patchDir,
        file_list_valid,
        flags.input_size,
        flags.batch_size,
        city_dict,
        city_alpha,
        dataAug=' ',
        block_mean=np.append([0], img_mean))

    # train
    start_time = time.time()

    model.train_config('X',
                       'Y',
                       flags.n_train,
                       flags.n_valid,
                       flags.input_size,
                       uabRepoPaths.modelPath,
                       loss_type='xent',
                       par_dir='Inria_Domain')
    model.run(
        train_reader=dataReader_train,
        valid_reader=dataReader_valid,
        pretrained_model_dir=PRED_DIR,
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=5,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size,
    )

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
Exemple #9
0
orig_img_name = os.path.join(orig_img_dir, task_id, '{}.tif'.format(img_id))
orig_img = imageio.imread(orig_img_name)
orig_img = scipy.misc.imresize(orig_img, [2541, 2541])
orig_img = cv2.LUT(orig_img, table)
imageio.imsave(os.path.join(adjust_save_dir, '{}.tif'.format(img_id)), orig_img)
img_mean = get_sum_of_channel(orig_img) / (2541 ** 2)
print(img_mean)

tf.reset_default_graph()
# make the model
# define place holder
X = tf.placeholder(tf.float32, shape=[None, input_size[0], input_size[1], 3], name='X')
y = tf.placeholder(tf.int32, shape=[None, input_size[0], input_size[1], 1], name='y')
mode = tf.placeholder(tf.bool, name='mode')
model = uabMakeNetwork_UNet.UnetModelCrop({'X': X, 'Y': y},
                                          trainable=mode,
                                          input_size=input_size,
                                          batch_size=5, start_filter_num=32)
# create graph
model.create_graph('X', class_num=2)
reader = uabDataReader.ImageLabelReader(gtInds=[0],
                                        dataInds=[0],
                                        nChannels=3,
                                        parentDir=adjust_save_dir,
                                        chipFiles=[['{}.tif'.format(img_id)]],
                                        chip_size=input_size,
                                        tile_size=tile_size,
                                        batchSize=5,
                                        block_mean=img_mean,
                                        overlap=model.get_overlap(),
                                        padding=np.array((model.get_overlap() / 2, model.get_overlap() / 2)),
                                        isTrain=False)
Exemple #10
0
X = tf.placeholder(tf.float32,
                   shape=[None, chip_size[0], chip_size[1], 3],
                   name='X')
y = tf.placeholder(tf.int32,
                   shape=[None, chip_size[0], chip_size[1], 1],
                   name='y')
mode = tf.placeholder(
    tf.bool, name='mode')  # This controls if you'll update weights or not
# Set this True when training
model = uabMakeNetwork_UNet.UnetModelCrop(
    {
        'X': X,
        'Y': y
    },
    trainable=mode,  # control if you're training or not
    input_size=chip_size,  # input size to NN, same as extracted
    # patch size
    batch_size=batch_size,  # mini-batch size
    learn_rate=learn_rate,  # learning rate
    decay_step=decay_step,  # learn rate decay after 60 epochs
    decay_rate=decay_rate,  # learn rate decay to 0.1*before
    epochs=epochs,  # total number of epochs to run
    start_filter_num=start_filter_num)  # number of filters at the first layer
model.create_graph('X', class_num=2)  # TensorFlow will now draw the graph

# create collection
# the original file is in /ei-edl01/data/uab_datasets/inria
blCol = uab_collectionFunctions.uabCollection('inria')
opDetObj = bPreproc.uabOperTileDivide(
    255)  # inria GT has value 0 and 255, we map it back to 0 and 1
# [3] is the channel id of GT
rescObj = uabPreprocClasses.uabPreprocMultChanOp([], 'GT_Divide.tif',
Exemple #11
0
def main(flags):
    np.random.seed(int(flags.run_id))
    tf.set_random_seed(int(flags.run_id))

    if flags.start_layer >= 10:
        pass
    else:
        flags.model_name += '_up{}'.format(flags.start_layer)

    # make network
    # define place holder
    X = tf.placeholder(
        tf.float32,
        shape=[None, flags.input_size[0], flags.input_size[1], 3],
        name='X')
    y = tf.placeholder(
        tf.int32,
        shape=[None, flags.input_size[0], flags.input_size[1], 1],
        name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({
        'X': X,
        'Y': y
    },
                                              trainable=mode,
                                              model_name=flags.model_name,
                                              input_size=flags.input_size,
                                              batch_size=flags.batch_size,
                                              learn_rate=flags.learning_rate,
                                              decay_step=flags.decay_step,
                                              decay_rate=flags.decay_rate,
                                              epochs=flags.epochs,
                                              start_filter_num=flags.sfn)
    model.create_graph('X', class_num=flags.num_classes)

    # create collection
    # the original file is in /ei-edl01/data/uab_datasets/inria
    blCol = uab_collectionFunctions.uabCollection(flags.ds_name)
    blCol.readMetadata()
    img_mean = blCol.getChannelMeans([1, 2, 3])  # get mean of rgb info

    # extract patches
    extrObj = uab_DataHandlerFunctions.uabPatchExtr(
        [0, 1, 2, 3],
        cSize=flags.input_size,
        numPixOverlap=int(model.get_overlap()),
        extSave=['png', 'jpg', 'jpg', 'jpg'],
        isTrain=True,
        gtInd=0,
        pad=int(model.get_overlap() // 2))
    patchDir = extrObj.run(blCol)

    # make data reader
    # use first 5 tiles for validation
    idx, file_list = uabCrossValMaker.uabUtilGetFolds(patchDir, 'fileList.txt',
                                                      'tile')
    file_list_train = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [0, 1, 2, 3])
    file_list_valid = uabCrossValMaker.make_file_list_by_key(
        idx, file_list, [4, 5])

    with tf.name_scope('image_loader'):
        # GT has no mean to subtract, append a 0 for block mean
        dataReader_train = uabDataReader.ImageLabelReader(
            [0], [1, 2, 3],
            patchDir,
            file_list_train,
            flags.input_size,
            flags.tile_size,
            flags.batch_size,
            dataAug='flip,rotate',
            block_mean=np.append([0], img_mean))
        # no augmentation needed for validation
        dataReader_valid = uabDataReader.ImageLabelReader([0], [1, 2, 3],
                                                          patchDir,
                                                          file_list_valid,
                                                          flags.input_size,
                                                          flags.tile_size,
                                                          flags.batch_size,
                                                          dataAug=' ',
                                                          block_mean=np.append(
                                                              [0], img_mean))

    # train
    start_time = time.time()

    if flags.start_layer >= 10:
        model.train_config('X',
                           'Y',
                           flags.n_train,
                           flags.n_valid,
                           flags.input_size,
                           uabRepoPaths.modelPath,
                           loss_type='xent',
                           par_dir='aemo/{}'.format(flags.ds_name))
    else:
        model.train_config('X',
                           'Y',
                           flags.n_train,
                           flags.n_valid,
                           flags.input_size,
                           uabRepoPaths.modelPath,
                           loss_type='xent',
                           par_dir='aemo/{}'.format(flags.ds_name),
                           train_var_filter=[
                               'layerup{}'.format(i)
                               for i in range(flags.start_layer, 10)
                           ])
    model.run(
        train_reader=dataReader_train,
        valid_reader=dataReader_valid,
        pretrained_model_dir=flags.
        model_dir,  # train from scratch, no need to load pre-trained model
        isTrain=True,
        img_mean=img_mean,
        verb_step=100,  # print a message every 100 step(sample)
        save_epoch=5,  # save the model every 5 epochs
        gpu=GPU,
        tile_size=flags.tile_size,
        patch_size=flags.input_size)

    duration = time.time() - start_time
    print('duration {:.2f} hours'.format(duration / 60 / 60))
        idx_truth,
        file_list_truth, [i for i in range(0, 6)],
        filter_list=[
            'bellingham', 'bloomington', 'sfo', 'tyrol-e', 'innsbruck'
        ])
    img_mean = blCol.getChannelMeans([0, 1, 2])

    # make the model
    # define place holder
    X = tf.placeholder(tf.float32, shape=[None, 1052, 1052, 3], name='X')
    y = tf.placeholder(tf.int32, shape=[None, 1052, 1052, 1], name='y')
    mode = tf.placeholder(tf.bool, name='mode')
    model = uabMakeNetwork_UNet.UnetModelCrop({
        'X': X,
        'Y': y
    },
                                              trainable=mode,
                                              input_size=[1052, 1052],
                                              batch_size=1)
    # create graph
    model.create_graph('X', class_num=2)

    # evaluate on tiles
    iou_return = model.evaluate(file_list_valid,
                                file_list_valid_truth,
                                parent_dir,
                                parent_dir_truth, [1052, 1052],
                                tile_size,
                                batch_size,
                                img_mean,
                                model_dir,