def jobtype_builder(): jtypes = ["Half Time", "Full Time", "Hourly", "Temporary"] xdr = FactorRange(factors=jtypes) ydr = DataRange1d(sources=[source_jobtype.columns("data_range")]) plot = Plot(title="Job Type", data_sources=[source_jobtype], x_range=xdr, y_range=ydr, plot_width=760, plot_height=500) xaxis = CategoricalAxis(plot=plot, dimension=0, major_label_orientation=pi / 4.0) yaxis = LinearAxis(plot=plot, dimension=1) yaxis.major_tick_in = 0 ygrid = Grid(plot=plot, dimension=1, axis=yaxis) quad = Rect(x="jobtypes", y="jobtype_half", height="count", width=0.9, fill_color="#33A6A4") bars = Glyph(data_source=source_jobtype, xdata_range=xdr, ydata_range=ydr, glyph=quad) plot.renderers.append(bars) plot.background_fill = '#686975' return plot
def job_loc_plot_builder(): xdr = FactorRange(factors=countries) ydr = DataRange1d(sources=[source_country.columns("data_range")]) plot = Plot(title="Postings by Job Location (Country)", data_sources=[source_country], x_range=xdr, y_range=ydr, plot_width=760, plot_height=500) xaxis = CategoricalAxis(plot=plot, dimension=0, major_label_orientation=pi / 4.0) yaxis = LinearAxis(plot=plot, dimension=1) yaxis.major_tick_in = 0 ygrid = Grid(plot=plot, dimension=1, axis=yaxis) quad = Rect(x="country", y="count_half", height="count", width=0.9, fill_color="#483D8B") bars = Glyph(data_source=source_country, xdata_range=xdr, ydata_range=ydr, glyph=quad) plot.renderers.append(bars) plot.background_fill = '#333333' return plot
def weekday_builder(): dow = [ "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday", "Sunday" ] xdr = FactorRange(factors=dow) ydr = DataRange1d(sources=[source_dow.columns("data_range")]) plot = Plot(title="Weekday of Job Posting", data_sources=[source_dow], x_range=xdr, y_range=ydr, plot_width=760, plot_height=500) xaxis = CategoricalAxis(plot=plot, dimension=0, major_label_orientation=pi / 4.0) yaxis = LinearAxis(plot=plot, dimension=1) yaxis.major_tick_in = 0 ygrid = Grid(plot=plot, dimension=1, axis=yaxis) quad = Rect(x="weekday", y="weekday_half", height="count", width=0.9, fill_color="#D9301A") bars = Glyph(data_source=source_dow, xdata_range=xdr, ydata_range=ydr, glyph=quad) plot.renderers.append(bars) plot.background_fill = '#686975' return plot
def make_punchcard_plot(self, source): xdr = FactorRange(factors=source.data["hours"][::7]) ydr = FactorRange(factors=source.data["days"][:7]) title = "%s punchcard" % self.modelform.installer plot = Plot(title=title, data_sources=[source], x_range=xdr, y_range=ydr, width=600, height=400) rect = Rect(x="hours", y="days", width=1, height=1, fill_color="red", fill_alpha="percentages") rect_glyph = Glyph(data_source=source, xdata_range=xdr, ydata_range=ydr, glyph=rect) plot.renderers.append(rect_glyph) hover = HoverTool(plot=plot, tooltips=dict(downloads="@counts")) plot.tools.append(hover) xaxis = CategoricalAxis(plot=plot, dimension=0) yaxis = CategoricalAxis(plot=plot, dimension=1) return plot
def test_Rect(): glyph = Rect() assert glyph.x == "x" assert glyph.y == "y" assert glyph.width == "width" assert glyph.height == "height" assert glyph.angle == "angle" assert glyph.dilate == False yield check_fill, glyph yield check_line, glyph yield check_props, glyph, ["x", "y", "width", "height", "angle", "dilate"], FILL, LINE
def make_box_violin_plot(data, maxwidth=0.9): """ data: dict[Str -> List[Number]] maxwidth: float Maximum width of tornado plot within each factor/facet Returns the plot object """ print("Plotting box violin graph") plot_width = 500 plot_height = 350 df = pd.DataFrame(columns=["group", "width", "height", "texts", "cats"]) bar_height = 50 bins = [0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e10] # Compute histograms, while keeping track of max Y values and max counts for i, (group, vals) in enumerate(data.iteritems()): hist, edges = np.histogram(vals, bins) df = df.append(pd.DataFrame(dict( group = group, width = np.log2(hist[1:]), height = np.ones(len(hist) - 1), texts = ["%d Nodes" % i for i in hist[1:-1]] + ["%d" % hist[-1]], cats = [">10^%d" % np.log10(bin) for bin in bins[1:-1]], ))) df.replace(-np.inf, 0) # Normalize the widths df["width"] *= (maxwidth / df["width"].max()) ds = ColumnDataSource(df) xdr = FactorRange(factors=sorted(df["group"].unique())) ydr = FactorRange(factors=list(df["cats"])) plot = Plot(data_sources=[ds], x_range=xdr, y_range=ydr, title="Degree Distribution (log scale)", plot_width=plot_width, plot_height=plot_height, tools=[]) yaxis = CategoricalAxis(plot=plot, location="left", axis_label="degree") plot.left.append(yaxis) glyph = Rect(x="group", y="cats", width="width", height="height", fill_color="#3366ff") text_glyph = Text(x="group", y="cats", text="texts", text_baseline="middle", text_align="center", angle=0) plot.renderers.append(Glyph(data_source=ds, xdata_range=xdr, ydata_range=ydr, glyph=glyph)) plot.renderers.append(Glyph(data_source=ds, xdata_range=xdr, ydata_range=ydr, glyph=text_glyph)) return plot
def large_plot(): source = ColumnDataSource(data=dict(x=[0, 1], y=[0, 1])) xdr = Range1d(start=0, end=1) xdr.tags.append("foo") xdr.tags.append("bar") ydr = Range1d(start=10, end=20) ydr.tags.append("foo") plot = Plot(x_range=xdr, y_range=ydr) ydr2 = Range1d(start=0, end=100) plot.extra_y_ranges = {"liny": ydr2} circle = Circle(x="x", y="y", fill_color="red", size=5, line_color="black") plot.add_glyph(source, circle, name="mycircle") line = Line(x="x", y="y") plot.add_glyph(source, line, name="myline") rect = Rect(x="x", y="y", width=1, height=1, fill_color="green") plot.add_glyph(source, rect, name="myrect") plot.add_layout(DatetimeAxis(), 'below') plot.add_layout(LogAxis(), 'left') plot.add_layout(LinearAxis(y_range_name="liny"), 'left') plot.add_layout(Grid(dimension=0), 'left') plot.add_layout(Grid(dimension=1), 'left') plot.add_tools( BoxZoomTool(), PanTool(), PreviewSaveTool(), ResetTool(), ResizeTool(), WheelZoomTool(), ) return plot
("DarkSlateGray", "#2F4F4F", "Gray/Black"), ("Black", "#000000", "Gray/Black"), ], columns=["Name", "Color", "Group"]) source = ColumnDataSource(dict( names = list(css3_colors.Name), groups = list(css3_colors.Group), colors = list(css3_colors.Color), )) xdr = FactorRange(factors=list(css3_colors.Group.unique())) ydr = FactorRange(factors=list(reversed(css3_colors.Name))) plot = Plot(title="CSS3 Color Names", x_range=xdr, y_range=ydr, plot_width=600, plot_height=2000) rect = Rect(x="groups", y="names", width=1, height=1, fill_color="colors", line_color=None) plot.add_glyph(source, rect) xaxis_above = CategoricalAxis(major_label_orientation=pi/4) plot.add_layout(xaxis_above, 'above') xaxis_below = CategoricalAxis(major_label_orientation=pi/4) plot.add_layout(xaxis_below, 'below') plot.add_layout(CategoricalAxis(), 'left') doc = Document() doc.add(plot) if __name__ == "__main__": filename = "colors.html"
y1="y", cx="xp01", cy="yp01", line_color="#4DAF4A", line_width=3)), ("ray", Ray(x="x", y="y", length=45, angle=-0.7, line_color="#FB8072", line_width=2)), ("rect", Rect(x="x", y="y", width=screen(10), height=screen(20), angle=-0.7, fill_color="#CAB2D6")), ("segment", Segment(x0="x", y0="y", x1="xm01", y1="ym01", line_color="#F4A582", line_width=3)), ("wedge", Wedge(x="x", y="y", radius=screen(15), start_angle=0.6, end_angle=4.1,
def setUp(self): from bokeh.glyphs import Rect self.test_rect = Rect()
def make_box_violin_plot(data, num_bins, maxwidth=0.9): """ data: dict[Str -> List[Number]] maxwidth: float Maximum width of tornado plot within each factor/facet Returns the plot object """ df = pd.DataFrame(columns=["group", "centers", "width", "height", "texts"]) bar_height = 50 bins = [0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6] # Compute histograms, while keeping track of max Y values and max counts for i, (group, vals) in enumerate(data.iteritems()): hist, edges = np.histogram(vals, bins) df = df.append( pd.DataFrame( dict( group=group, centers=np.arange(len(hist)) * bar_height, width=np.log10(hist), height=np.ones(hist.shape) * bar_height, texts=map(str, hist), ))) df.replace(-np.inf, 0) # Normalize the widths df["width"] *= (maxwidth / df["width"].max()) ds = ColumnDataSource(df) xdr = FactorRange(factors=sorted(df["group"].unique())) ydr = DataRange1d(sources=[ds.columns("centers")]) plot = Plot(data_sources=[ds], x_range=xdr, y_range=ydr, title="Degree Distribution", plot_width=750, plot_height=600, tools=[]) xaxis = CategoricalAxis(plot=plot, location="bottom", axis_label="number of nodes") #yaxis = LogAxis(plot=plot, location="left", axis_label="degree") plot.below.append(xaxis) #plot.above.append(yaxis) #xgrid = Grid(plot=plot, dimension=0, axis=xaxis) #ygrid = Grid(plot=plot, dimension=1, axis=yaxis) glyph = Rect(x="group", y="centers", width="width", height="height") text_glyph = Text(x="group", y="centers", text="texts", text_baseline="middle", text_align="center") plot.renderers.append( Glyph(data_source=ds, xdata_range=xdr, ydata_range=ydr, glyph=glyph)) plot.renderers.append( Glyph(data_source=ds, xdata_range=xdr, ydata_range=ydr, glyph=text_glyph)) return plot