Exemple #1
0
label_data = ColumnDataSource(
    data=dict(x=[1, 2, 3], y=[0, 0, 0], t=['Original', 'Normal', 'Uniform']))
label_set = LabelSet(x='x',
                     y='y',
                     text='t',
                     y_offset=-4,
                     source=label_data,
                     render_mode='css',
                     text_baseline="top",
                     text_align='center')
p.add_layout(label_set)

callback = CustomJS(args=dict(source=source, normal=normal, uniform=uniform),
                    code="""
    const data = source.data;
    for (var i = 0; i < data.y.length; i++) {
        data.xn[i] = normal.compute(data.x[i] + 1);
    }
    for (var i = 0; i < data.y.length; i++) {
        data.xu[i] = uniform.compute(data.x[i] + 2);
    }
    source.change.emit();
""")

button = Button(label='Press to apply Jitter!', width=300)
button.js_on_click(callback)

output_file("transform_jitter.html", title="Example Jitter Transform")

show(Column(button, p))
Exemple #2
0
# Set up callbacks
def update_title(attrname, old, new):
    plot.title.text = text.value


text.on_change('value', update_title)


def update_data(attrname, old, new):

    # Get the current slider values
    a = amplitude.value
    b = offset.value
    w = phase.value
    k = freq.value

    # Generate the new curve
    x = np.linspace(0, 4 * np.pi, N)
    y = a * np.sin(k * x + w) + b
    source.data = dict(x=x, y=y)


for w in [offset, amplitude, phase, freq]:
    w.on_change('value', update_data)

# Set up layouts and add to document
inputs = Column(text, offset, amplitude, phase, freq)

curdoc().add_root(row(inputs, plot, width=800))

curdoc().title = 'Sliders'
Exemple #3
0
def plot_waveform_bokeh(filename,waveform_list,metadata_list,station_lat_list,\
                       station_lon_list, event_lat, event_lon, boundary_data, style_parameter):
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    #
    map_station_location_bokeh = ColumnDataSource(data=dict(map_lat_list=station_lat_list,\
                                                            map_lon_list=station_lon_list))
    dot_default_index = 0
    selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[station_lat_list[dot_default_index]],\
                                                           lon=[station_lon_list[dot_default_index]],\
                                                           index=[dot_default_index]))
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['map_view_plot_height'], \
                      y_range=[style_parameter['map_view_lat_min'],\
                    style_parameter['map_view_lat_max']], x_range=[style_parameter['map_view_lon_min'],\
                    style_parameter['map_view_lon_max']], tools=style_parameter['map_view_tools'],\
                    title=style_parameter['map_view_title'])
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='gray',\
                        line_width=2, level='underlay', nonselection_line_alpha=1.0,\
                        nonselection_line_color='gray')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='gray',\
                        level='underlay', nonselection_line_alpha=1.0,\
                        nonselection_line_color='gray')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='gray',\
                        line_width=2, nonselection_line_alpha=1.0, level='underlay',
                        nonselection_line_color='gray')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='gray',\
                        level='underlay', nonselection_line_alpha=1.0,\
                        nonselection_line_color='gray')
    #
    map_view.triangle('map_lon_list', 'map_lat_list', source=map_station_location_bokeh, \
                      line_color='gray', size=style_parameter['marker_size'], fill_color='black',\
                      selection_color='black', selection_line_color='gray',\
                      selection_fill_alpha=1.0,\
                      nonselection_fill_alpha=1.0, nonselection_fill_color='black',\
                      nonselection_line_color='gray', nonselection_line_alpha=1.0)
    map_view.triangle('lon','lat', source=selected_dot_on_map_bokeh,\
                      size=style_parameter['selected_marker_size'], line_color='black',fill_color='red')
    map_view.asterisk([event_lon], [event_lat], size=style_parameter['event_marker_size'], line_width=3, line_color='red', \
                      fill_color='red')
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # --------------------------------------------------------
    max_waveform_length = 0
    max_waveform_amp = 0
    ncurve = len(waveform_list)
    for a_sta in waveform_list:
        for a_trace in a_sta:
            if len(a_trace) > max_waveform_length:
                max_waveform_length = len(a_trace)
            if np.max(np.abs(a_trace)) > max_waveform_amp:
                max_waveform_amp = np.max(np.abs(a_trace))
    #
    plotting_list = []
    for a_sta in waveform_list:
        temp = []
        for a_trace in a_sta:
            if len(a_trace) < max_waveform_length:
                a_trace = np.append(
                    a_trace, np.zeros([(max_waveform_length - len(a_trace)),
                                       1]))
            temp.append(list(a_trace))
        plotting_list.append(temp)
    #
    time_list = []
    for ista in range(len(plotting_list)):
        a_sta = plotting_list[ista]
        temp = []
        for itr in range(len(a_sta)):
            a_trace = a_sta[itr]
            delta = metadata_list[ista][itr]['delta']
            time = list(np.arange(len(a_trace)) * delta)
            temp.append(time)
        #
        time_list.append(temp)
    #
    reftime_label_list = []
    channel_label_list = []
    for ista in range(len(metadata_list)):
        temp_ref = []
        temp_channel = []
        a_sta = metadata_list[ista]
        for a_trace in a_sta:
            temp_ref.append('Starting from ' + a_trace['starttime'])
            temp_channel.append(a_trace['network'] + '_' + a_trace['station'] +
                                '_' + a_trace['channel'])
        reftime_label_list.append(temp_ref)
        channel_label_list.append(temp_channel)
    # --------------------------------------------------------
    curve_fig01 = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \
                       y_range=(-max_waveform_amp*1.05,max_waveform_amp*1.05), \
                       x_range=(0,max_waveform_length),\
                    tools=['save','box_zoom','ywheel_zoom','xwheel_zoom','reset','crosshair','pan'])
    #
    curve_index = 0
    select_curve_data = plotting_list[dot_default_index][curve_index]
    select_curve_time = time_list[dot_default_index][curve_index]

    selected_curve_data_bokeh01 = ColumnDataSource(
        data=dict(time=select_curve_time, amp=select_curve_data))
    select_reftime_label = reftime_label_list[dot_default_index][curve_index]
    selected_reftime_label_bokeh01 = ColumnDataSource(data=dict(x=[style_parameter['curve_reftime_label_x']],\
                                                                y=[style_parameter['curve_reftime_label_y']],\
                                                                label=[select_reftime_label]))
    select_channel_label = channel_label_list[dot_default_index][curve_index]
    selected_channel_label_bokeh01 = ColumnDataSource(data=dict(x=[style_parameter['curve_channel_label_x']],\
                                                                y=[style_parameter['curve_channel_label_y']],\
                                                                label=[select_channel_label]))
    all_curve_data_bokeh = ColumnDataSource(
        data=dict(t=time_list, amp=plotting_list))
    all_reftime_label_bokeh = ColumnDataSource(data=dict(
        label=reftime_label_list))
    all_channel_label_bokeh = ColumnDataSource(data=dict(
        label=channel_label_list))
    # plot waveform
    curve_fig01.line('time','amp', source=selected_curve_data_bokeh01,\
                   line_color='black')
    # add refference time as a label
    curve_fig01.text('x', 'y', 'label', source=selected_reftime_label_bokeh01)
    # add channel label
    curve_fig01.text('x', 'y', 'label', source=selected_channel_label_bokeh01)
    # change style
    curve_fig01.title.text_font_size = style_parameter['title_font_size']
    curve_fig01.title.align = 'center'
    curve_fig01.title.text_font_style = 'normal'
    curve_fig01.xaxis.axis_label = style_parameter['curve_xlabel']
    curve_fig01.xaxis.axis_label_text_font_style = 'normal'
    curve_fig01.xaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig01.xaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig01.yaxis.axis_label = style_parameter['curve_ylabel']
    curve_fig01.yaxis.axis_label_text_font_style = 'normal'
    curve_fig01.yaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig01.yaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig01.toolbar.logo = None
    curve_fig01.toolbar_location = 'above'
    curve_fig01.toolbar_sticky = False
    # --------------------------------------------------------
    curve_fig02 = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \
                       y_range=(-max_waveform_amp*1.05,max_waveform_amp*1.05), \
                       x_range=(0,max_waveform_length),\
                    tools=['save','box_zoom','ywheel_zoom','xwheel_zoom','reset','crosshair','pan'])
    #
    curve_index = 1
    select_curve_data = plotting_list[dot_default_index][curve_index]
    select_curve_time = time_list[dot_default_index][curve_index]
    selected_curve_data_bokeh02 = ColumnDataSource(
        data=dict(time=select_curve_time, amp=select_curve_data))
    select_channel_label = channel_label_list[dot_default_index][curve_index]
    selected_channel_label_bokeh02 = ColumnDataSource(data=dict(x=[style_parameter['curve_channel_label_x']],\
                                                                y=[style_parameter['curve_channel_label_y']],\
                                                                label=[select_channel_label]))
    # plot waveform
    curve_fig02.line('time','amp', source=selected_curve_data_bokeh02,\
                   line_color='black')
    # add channel label
    curve_fig02.text('x', 'y', 'label', source=selected_channel_label_bokeh02)
    # change style
    curve_fig02.title.text_font_size = style_parameter['title_font_size']
    curve_fig02.title.align = 'center'
    curve_fig02.title.text_font_style = 'normal'
    curve_fig02.xaxis.axis_label = style_parameter['curve_xlabel']
    curve_fig02.xaxis.axis_label_text_font_style = 'normal'
    curve_fig02.xaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig02.xaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig02.yaxis.axis_label = style_parameter['curve_ylabel']
    curve_fig02.yaxis.axis_label_text_font_style = 'normal'
    curve_fig02.yaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig02.yaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig02.toolbar.logo = None
    curve_fig02.toolbar_location = 'above'
    curve_fig02.toolbar_sticky = False
    # --------------------------------------------------------
    curve_fig03 = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \
                       y_range=(-max_waveform_amp*1.05,max_waveform_amp*1.05), \
                       x_range=(0,max_waveform_length),\
                    tools=['save','box_zoom','ywheel_zoom','xwheel_zoom','reset','crosshair','pan'])
    #
    curve_index = 2
    select_curve_data = plotting_list[dot_default_index][curve_index]
    select_curve_time = time_list[dot_default_index][curve_index]
    selected_curve_data_bokeh03 = ColumnDataSource(
        data=dict(time=select_curve_time, amp=select_curve_data))
    select_channel_label = channel_label_list[dot_default_index][curve_index]
    selected_channel_label_bokeh03 = ColumnDataSource(data=dict(x=[style_parameter['curve_channel_label_x']],\
                                                                y=[style_parameter['curve_channel_label_y']],\
                                                                label=[select_channel_label]))
    # plot waveform
    curve_fig03.line('time','amp', source=selected_curve_data_bokeh03,\
                   line_color='black')
    # add channel label
    curve_fig03.text('x', 'y', 'label', source=selected_channel_label_bokeh03)
    # change style
    curve_fig03.title.text_font_size = style_parameter['title_font_size']
    curve_fig03.title.align = 'center'
    curve_fig03.title.text_font_style = 'normal'
    curve_fig03.xaxis.axis_label = style_parameter['curve_xlabel']
    curve_fig03.xaxis.axis_label_text_font_style = 'normal'
    curve_fig03.xaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig03.xaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig03.yaxis.axis_label = style_parameter['curve_ylabel']
    curve_fig03.yaxis.axis_label_text_font_style = 'normal'
    curve_fig03.yaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig03.yaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig03.toolbar.logo = None
    curve_fig03.toolbar_location = 'above'
    curve_fig03.toolbar_sticky = False
    # --------------------------------------------------------
    map_station_location_js = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                            map_station_location_bokeh=map_station_location_bokeh,\
                                                            selected_curve_data_bokeh01=selected_curve_data_bokeh01,\
                                                            selected_curve_data_bokeh02=selected_curve_data_bokeh02,\
                                                            selected_curve_data_bokeh03=selected_curve_data_bokeh03,\
                                                            selected_channel_label_bokeh01=selected_channel_label_bokeh01,\
                                                            selected_channel_label_bokeh02=selected_channel_label_bokeh02,\
                                                            selected_channel_label_bokeh03=selected_channel_label_bokeh03,\
                                                            selected_reftime_label_bokeh01=selected_reftime_label_bokeh01,\
                                                            all_reftime_label_bokeh=all_reftime_label_bokeh,\
                                                            all_channel_label_bokeh=all_channel_label_bokeh,\
                                                            all_curve_data_bokeh=all_curve_data_bokeh), code="""
    var inds = cb_obj.indices
    
    selected_dot_on_map_bokeh.data['index'] = [inds]
    var new_loc = map_station_location_bokeh.data
    
    selected_dot_on_map_bokeh.data['lat'] = [new_loc['map_lat_list'][inds]]
    selected_dot_on_map_bokeh.data['lon'] = [new_loc['map_lon_list'][inds]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh01.data['t'] = all_curve_data_bokeh.data['t'][inds][0]
    selected_curve_data_bokeh01.data['amp'] = all_curve_data_bokeh.data['amp'][inds][0]

    selected_curve_data_bokeh01.change.emit()
    
    selected_curve_data_bokeh02.data['t'] = all_curve_data_bokeh.data['t'][inds][1]
    selected_curve_data_bokeh02.data['amp'] = all_curve_data_bokeh.data['amp'][inds][1]

    selected_curve_data_bokeh02.change.emit()
    
    selected_curve_data_bokeh03.data['t'] = all_curve_data_bokeh.data['t'][inds][2]
    selected_curve_data_bokeh03.data['amp'] = all_curve_data_bokeh.data['amp'][inds][2]

    selected_curve_data_bokeh03.change.emit()
    
    selected_reftime_label_bokeh01.data['label'] = [all_reftime_label_bokeh.data['label'][inds][0]]
    
    selected_reftime_label_bokeh01.change.emit()
    
    selected_channel_label_bokeh01.data['label'] = [all_channel_label_bokeh.data['label'][inds][0]]
    
    selected_channel_label_bokeh01.change.emit()
    
    selected_channel_label_bokeh02.data['label'] = [all_channel_label_bokeh.data['label'][inds][1]]
    
    selected_channel_label_bokeh02.change.emit()
    
    selected_channel_label_bokeh03.data['label'] = [all_channel_label_bokeh.data['label'][inds][2]]
    
    selected_channel_label_bokeh03.change.emit()
    """)
    #
    map_station_location_bokeh.selected.js_on_change('indices',
                                                     map_station_location_js)
    #
    curve_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                map_station_location_bokeh=map_station_location_bokeh,\
                                                selected_curve_data_bokeh01=selected_curve_data_bokeh01,\
                                                selected_curve_data_bokeh02=selected_curve_data_bokeh02,\
                                                selected_curve_data_bokeh03=selected_curve_data_bokeh03,\
                                                selected_channel_label_bokeh01=selected_channel_label_bokeh01,\
                                                selected_channel_label_bokeh02=selected_channel_label_bokeh02,\
                                                selected_channel_label_bokeh03=selected_channel_label_bokeh03,\
                                                selected_reftime_label_bokeh01=selected_reftime_label_bokeh01,\
                                                all_reftime_label_bokeh=all_reftime_label_bokeh,\
                                                all_channel_label_bokeh=all_channel_label_bokeh,\
                                                all_curve_data_bokeh=all_curve_data_bokeh),code="""
    var inds = Math.round(cb_obj.value)
    
    selected_dot_on_map_bokeh.data['index'] = [inds]
    var new_loc = map_station_location_bokeh.data
    
    selected_dot_on_map_bokeh.data['lat'] = [new_loc['map_lat_list'][inds]]
    selected_dot_on_map_bokeh.data['lon'] = [new_loc['map_lon_list'][inds]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh01.data['t'] = all_curve_data_bokeh.data['t'][inds][0]
    selected_curve_data_bokeh01.data['amp'] = all_curve_data_bokeh.data['amp'][inds][0]

    selected_curve_data_bokeh01.change.emit()
    
    selected_curve_data_bokeh02.data['t'] = all_curve_data_bokeh.data['t'][inds][1]
    selected_curve_data_bokeh02.data['amp'] = all_curve_data_bokeh.data['amp'][inds][1]

    selected_curve_data_bokeh02.change.emit()
    
    selected_curve_data_bokeh03.data['t'] = all_curve_data_bokeh.data['t'][inds][2]
    selected_curve_data_bokeh03.data['amp'] = all_curve_data_bokeh.data['amp'][inds][2]

    selected_curve_data_bokeh03.change.emit()
    
    selected_reftime_label_bokeh01.data['label'] = [all_reftime_label_bokeh.data['label'][inds][0]]
    
    selected_reftime_label_bokeh01.change.emit()
    
    selected_channel_label_bokeh01.data['label'] = [all_channel_label_bokeh.data['label'][inds][0]]
    
    selected_channel_label_bokeh01.change.emit()
    
    selected_channel_label_bokeh02.data['label'] = [all_channel_label_bokeh.data['label'][inds][1]]
    
    selected_channel_label_bokeh02.change.emit()
    
    selected_channel_label_bokeh03.data['label'] = [all_channel_label_bokeh.data['label'][inds][2]]
    
    selected_channel_label_bokeh03.change.emit()
    """)
    curve_slider = Slider(start=0, end=ncurve-1, value=style_parameter['curve_default_index'], \
                          step=1, title=style_parameter['curve_slider_title'], width=style_parameter['map_view_plot_width'],\
                          height=50)
    curve_slider.js_on_change('value', curve_slider_callback)
    curve_slider_callback.args['curve_index'] = curve_slider
    # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text=style_parameter['annotating_html02'],\
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    output_file(filename,
                title=style_parameter['html_title'],
                mode=style_parameter['library_source'])
    #
    left_fig = Column(curve_slider,
                      map_view,
                      annotating_fig01,
                      width=style_parameter['left_column_width'])

    right_fig = Column(curve_fig01,
                       curve_fig02,
                       curve_fig03,
                       annotating_fig02,
                       width=style_parameter['right_column_width'])
    layout = Row(left_fig, right_fig)
    save(layout)
Exemple #4
0
selectType.on_change("value",typeChange)

def updatePlot():
    setMapColorRange()
    newfig=plotAvgTrend()
    graphColumn.children[2]=newfig
    new_countryMap=createMap()
    mapColum.children[0]=new_countryMap

def slider_update(attrname, old, new):
    global year
    year=new
    new_countryMap=createMap()
    mapColum.children[0]=new_countryMap
    
slider = Slider(start=1973, end=2017, value=2017, step=1, title="Year")
slider.on_change('value', slider_update)
  
div = Div(text="""
<p>All source data is from the Begian governement at <a href=https://statbel.fgov.be/en target="_blank">https://statbel.fgov.be/en</a>.</br>
All data are averages.</br>
For communes where no data was available at all the average was set at 0.</br>
For years where no data was available the average was set to the same value as the year before.</br>
<b>The interactive graph was made by <a href=mailto:[email protected] >Joris Meert</a> for educational purpose.</b></p>
""",width=700, height=100)
 
graphColumn=Column(selectType,Row(selectCommune1,selectCommune2),fig,selectYaxis,div)
mapColum=Column(countryMap,Row(slider,button))
layout=Row(graphColumn,mapColum)
curdoc().add_root(layout)
curdoc().title="Belgian house market"
Exemple #5
0
    def initialize_plot(self, plots=None, ranges=None):
        ranges = self.compute_ranges(self.layout, self.keys[-1], None)
        opts = self.layout.opts.get('plot', self.backend)
        opts = {} if opts is None else opts.kwargs

        plot_grid = self._compute_grid()
        passed_plots = [] if plots is None else plots
        r_offset = 0
        col_offsets = defaultdict(int)
        tab_plots = []

        stretch_width = False
        stretch_height = False
        for r in range(self.rows):
            # Compute row offset
            row = [(k, sp) for k, sp in self.subplots.items() if k[0] == r]
            row_padded = any(len(sp.layout) > 2 for k, sp in row)
            if row_padded:
                r_offset += 1

            for c in range(self.cols):
                subplot = self.subplots.get((r, c), None)

                # Compute column offset
                col = [(k, sp) for k, sp in self.subplots.items() if k[1] == c]
                col_padded = any(len(sp.layout) > 1 for k, sp in col)
                if col_padded:
                    col_offsets[r] += 1
                c_offset = col_offsets.get(r, 0)

                if subplot is None:
                    continue

                shared_plots = list(passed_plots) if self.shared_axes else None
                subplots = subplot.initialize_plot(ranges=ranges,
                                                   plots=shared_plots)
                nsubplots = len(subplots)

                modes = {
                    sp.sizing_mode
                    for sp in subplots
                    if sp.sizing_mode not in (None, 'auto', 'fixed')
                }
                sizing_mode = self.sizing_mode
                if modes:
                    responsive_width = any(s in m for m in modes
                                           for s in ('width', 'both'))
                    responsive_height = any(s in m for m in modes
                                            for s in ('height', 'both'))
                    stretch_width |= responsive_width
                    stretch_height |= responsive_height
                    if responsive_width and responsive_height:
                        sizing_mode = 'stretch_both'
                    elif responsive_width:
                        sizing_mode = 'stretch_width'
                    elif responsive_height:
                        sizing_mode = 'stretch_height'

                # If tabs enabled lay out AdjointLayout on grid
                if self.tabs:
                    title = subplot.subplots['main']._format_title(
                        self.keys[-1], dimensions=False)

                    if not title:
                        title = ' '.join(self.paths[r, c])

                    if nsubplots == 1:
                        grid = subplots[0]
                    elif nsubplots == 2:
                        grid = gridplot([subplots],
                                        merge_tools=self.merge_tools,
                                        toolbar_location=self.toolbar,
                                        sizing_mode=sizing_mode)
                    else:
                        grid = [[subplots[2], None], subplots[:2]]
                        grid = gridplot(children=grid,
                                        merge_tools=self.merge_tools,
                                        toolbar_location=self.toolbar,
                                        sizing_mode=sizing_mode)
                    tab_plots.append((title, grid))
                    continue

                # Situate plot in overall grid
                if nsubplots > 2:
                    plot_grid[r + r_offset - 1][c + c_offset - 1] = subplots[2]
                plot_column = plot_grid[r + r_offset]
                if nsubplots > 1:
                    plot_column[c + c_offset - 1] = subplots[0]
                    plot_column[c + c_offset] = subplots[1]
                else:
                    plot_column[c + c_offset - int(col_padded)] = subplots[0]
                passed_plots.append(subplots[0])

        if 'sizing_mode' in opts:
            sizing_mode = opts['sizing_mode']
        elif stretch_width and stretch_height:
            sizing_mode = 'stretch_both'
        elif stretch_width:
            sizing_mode = 'stretch_width'
        elif stretch_height:
            sizing_mode = 'stretch_height'
        else:
            sizing_mode = None

        # Wrap in appropriate layout model
        if self.tabs:
            plots = filter_toolboxes([p for t, p in tab_plots])
            panels = [Panel(child=child, title=t) for t, child in tab_plots]
            layout_plot = Tabs(tabs=panels, sizing_mode=sizing_mode)
        else:
            plot_grid = filter_toolboxes(plot_grid)
            layout_plot = gridplot(children=plot_grid,
                                   toolbar_location=self.toolbar,
                                   merge_tools=self.merge_tools,
                                   sizing_mode=sizing_mode)

        title = self._get_title_div(self.keys[-1])
        if title:
            self.handles['title'] = title
            layout_plot = Column(title, layout_plot, sizing_mode=sizing_mode)

        self.handles['plot'] = layout_plot
        self.handles['plots'] = plots

        if self.shared_datasource:
            self.sync_sources()

        if self.top_level:
            self.init_links()

        self.drawn = True

        return self.handles['plot']
Exemple #6
0
def large_plot(n: int) -> Tuple[Model, Set[Model]]:
    from bokeh.models import (
        BoxSelectTool,
        BoxZoomTool,
        Column,
        ColumnDataSource,
        DataRange1d,
        GlyphRenderer,
        Grid,
        Line,
        LinearAxis,
        PanTool,
        Plot,
        ResetTool,
        SaveTool,
        WheelZoomTool,
        ZoomInTool,
        ZoomOutTool,
    )

    col = Column()
    objects: Set[Model] = {col}

    for i in range(n):
        source = ColumnDataSource(data=dict(x=[0, i + 1], y=[0, i + 1]))
        xdr = DataRange1d()
        ydr = DataRange1d()
        plot = Plot(x_range=xdr, y_range=ydr)
        xaxis = LinearAxis()
        plot.add_layout(xaxis, "below")
        yaxis = LinearAxis()
        plot.add_layout(yaxis, "left")
        xgrid = Grid(dimension=0)
        plot.add_layout(xgrid, "center")
        ygrid = Grid(dimension=1)
        plot.add_layout(ygrid, "center")
        tickers = [
            xaxis.ticker, xaxis.formatter, yaxis.ticker, yaxis.formatter
        ]
        glyph = Line(x='x', y='y')
        renderer = GlyphRenderer(data_source=source, glyph=glyph)
        plot.renderers.append(renderer)
        pan = PanTool()
        zoom_in = ZoomInTool()
        zoom_out = ZoomOutTool()
        wheel_zoom = WheelZoomTool()
        box_zoom = BoxZoomTool()
        box_select = BoxSelectTool()
        save = SaveTool()
        reset = ResetTool()
        tools = [
            pan, zoom_in, zoom_out, wheel_zoom, box_zoom, box_select, save,
            reset
        ]
        plot.add_tools(*tools)
        col.children.append(plot)
        objects |= set([
            xdr,
            ydr,
            xaxis,
            xaxis.major_label_policy,
            yaxis,
            yaxis.major_label_policy,
            xgrid,
            ygrid,
            renderer,
            renderer.view,
            glyph,
            source,
            source.selected,
            source.selection_policy,
            plot,
            plot.x_scale,
            plot.y_scale,
            plot.toolbar,
            plot.title,
            box_zoom.overlay,
            box_select.overlay,
        ] + tickers + tools)

    return col, objects
def FrecuenciaCardiaca(DatosBokeh, EjeX, MetricasAuxiliares):
    """
        GRAFICO AREA | FRECUENCIA CARDIACA
    """

    # Creacion del diccionario de metricas auxiliares
    DiccionarioVariables = ParametrosVariables(DatosBokeh)

    # Generacion del codigo JavaScript que habilita la visualizacion de metricas auxiliares
    CodigoJS = GeneracionCodigoJS(MetricasAuxiliares)

    # Asignacion de tamaño del punto en graficas discretas
    SizeCircle = FunctionSizeCircle(DatosBokeh)

    # Creacion de un grafica
    PLT = figure(width=1000,
                 height=400,
                 x_range=(DatosBokeh.data[EjeX].min(),
                          DatosBokeh.data[EjeX].max()),
                 y_range=(LimiteEjeY(DatosBokeh, 'FRECUENCIA CARDIACA',
                                     'Inferior'),
                          LimiteEjeY(DatosBokeh, 'FRECUENCIA CARDIACA',
                                     'Superior')),
                 tools='',
                 toolbar_location=None)

    # Creacion del area bajo la linea de la metrica a partir del CDS
    Area = DatosBokeh.to_df().copy().reset_index()[[
        EjeX, 'FrecuenciaCardiaca[ppm]'
    ]].set_index(EjeX)
    Area.rename(columns={'FrecuenciaCardiaca[ppm]': 'Area'}, inplace=True)
    AreaBottom = Area[::-1]
    AreaBottom['Area'] = 0
    PLT.patch(x=hstack((AreaBottom.index, Area.index)),
              y=hstack((AreaBottom['Area'], Area['Area'])),
              color=Grapefruit[1],
              alpha=1,
              line_color=None)

    # Inclusion de datos
    PLT_Linea = PLT.line(EjeX,
                         'FrecuenciaCardiaca[ppm]',
                         source=DatosBokeh,
                         color=Grapefruit[2],
                         line_width=2,
                         line_cap='round')
    PLT.add_tools(
        HoverTool(tooltips=[('', '@{FrecuenciaCardiaca[ppm]}{int} ppm')],
                  renderers=[PLT_Linea],
                  mode='vline'))
    PLT_Max = PLT.inverted_triangle(
        DatosBokeh.data[EjeX][list(
            DatosBokeh.data['FrecuenciaCardiaca[ppm]']).index(
                DatosBokeh.data['FrecuenciaCardiaca[ppm]'].max())],
        DatosBokeh.data['FrecuenciaCardiaca[ppm]'].max(),
        size=10,
        line_color=DarkGray[1],
        line_width=2,
        fill_color=LightGray[1])
    PLT.add_tools(
        HoverTool(tooltips=[
            ('Maximo',
             str(DatosBokeh.data['FrecuenciaCardiaca[ppm]'].max()) + ' ppm')
        ],
                  renderers=[PLT_Max],
                  mode='mouse'))
    PLT.add_layout(
        Span(location=DatosBokeh.data['FrecuenciaCardiaca[ppm]'].mean(),
             dimension='width',
             line_color=Grapefruit[0],
             line_dash='dashed',
             line_width=1,
             line_alpha=1))

    # Inclusion de lineas auxiliares
    ListadoMetricasAuxiliares = {}
    for Metrica in MetricasAuxiliares:
        if DiccionarioVariables[Metrica]['Tipo'] == 'circle':
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.circle(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['FRECUENCIA CARDIACA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    size=SizeCircle,
                    line_color=DiccionarioVariables[Metrica]['Color'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])
        elif DiccionarioVariables[Metrica]['Tipo'] == 'step':
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.step(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['FRECUENCIA CARDIACA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])
        else:
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.line(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['FRECUENCIA CARDIACA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])

    # Atributos
    PLT.title.text = 'FRECUENCIA CARDIACA'
    PLT.sizing_mode = 'fixed'
    PLT.yaxis.axis_label = 'Frecuencia cardiaca [ppm]'
    PLT.yaxis.formatter = NumeralTickFormatter(format='0')
    PLT.grid.visible = False
    PLT.yaxis.minor_tick_line_color = None
    PLT.yaxis.major_label_overrides = FormateoEjes(
        DatosBokeh.data['FrecuenciaCardiaca[ppm]'], 10, 1)

    # Asignacion de opciones de visualizacion del eje X
    if EjeX == 'Distancia[m]':
        PLT.xaxis.axis_label = 'Distancia'
        PLT.xaxis.formatter = NumeralTickFormatter(format='0')
        if DatosBokeh.data['Distancia[m]'].max() >= 4000:
            PLT.xaxis.ticker = SingleIntervalTicker(interval=1000)
            PLT.xaxis.major_label_overrides = FormateoEjes(
                DatosBokeh.data['Distancia[m]'], 1000, 1000, 0, 0)
    elif EjeX == 'TiempoActividad':
        PLT.xaxis.axis_label = 'Tiempo actividad'
        PLT.xaxis.formatter = DatetimeTickFormatter(hourmin='%H:%M:%S',
                                                    minutes='%M:%S',
                                                    seconds='%Ss')
        PLT.xaxis.ticker = DatetimeTicker()
    elif EjeX == 'TiempoTotal':
        PLT.xaxis.axis_label = 'Tiempo total'
        PLT.xaxis.formatter = DatetimeTickFormatter(hourmin='%H:%M:%S',
                                                    minutes='%M:%S',
                                                    seconds='%Ss')
        PLT.xaxis.ticker = DatetimeTicker()

    #Botones
    Botones = CheckboxGroup(labels=MetricasAuxiliares,
                            active=[],
                            width=100,
                            height=380)
    ListadoMetricasAuxiliares['checkbox'] = Botones
    CodigoJSFrecuenciaCardiaca = CustomJS(code=CodigoJS,
                                          args=ListadoMetricasAuxiliares)
    Botones.js_on_click(CodigoJSFrecuenciaCardiaca)

    #Layout
    GridBotones = layout(
        [Spacer(width=100, height=25),
         Column(Botones, width=100, height=375)],
        sizing_mode='fixed',
        width=100,
        height=400)
    GridGrafica = gridplot([PLT, GridBotones],
                           ncols=2,
                           sizing_mode='stretch_width',
                           toolbar_location=None,
                           plot_width=1100,
                           plot_height=400)

    return GridGrafica
args = document.session_context.request.arguments

try:
    file = args['file'][0].decode('ascii')
    user = args['user'][0].decode('ascii')
except KeyError as e:
    raise KeyError(
        str(e) +
        '. Filename and username must be provided as request parameters.')

# find path for result data
results_path = join(UPLOAD_FOLDER, user, file, 'results')

p = Paragraph(text="", width=500)
layout = Column(children=[p])

layer_activation_source = ColumnDataSource(data=dict())


def create_image_grid(filters):

    no_of_images = len(filters)

    if no_of_images < 4:
        no_of_rows = 1
    elif no_of_images < 64:
        no_of_rows = 4
    else:
        no_of_rows = 8
Exemple #9
0
    var data = source.data;
    var dx = 6 / %d;

    if (mode == 'None') {
        data['x'] = [];
        data['y'] = [];
    }
    else {
        if (mode == 'Linear') { interp = linear; }
        else if (mode == 'Step (before)') { interp = step; step.mode = 'before'; }
        else if (mode == 'Step (center)') { interp = step; step.mode = 'center'; }
        else if (mode == 'Step (after)')  { interp = step; step.mode = 'after';  }

        for (var i = 0; i < %d; i++) {
            data['x'][i] = i * dx
            data['y'][i] = interp.compute(data['x'][i])
        }
    }

    source.change.emit()
""" % (N, N))

mode = Select(
    title='Interpolation Mode',
    value='None',
    options=['None', 'Linear', 'Step (before)', 'Step (center)', 'Step (after)'],
    callback=callback)
output_file("transform_interpolator.html", title="Example Transforms")

show(Column(WidgetBox(mode,width=300), p))
    else:
        #If the number of stations deployed is max, display message
        print("Max number of stations reached")
#
#-----------------------------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------------------------




#-------------------------------This allows you to interact with the drone sim button to start the drone simulation-----------------------
#-----------------------------------------------------------------------------------------------------------------------------------------
#
def callbackSimRun(event):
    eventTrigger(coordList)
#
#-----------------------------------------------------------------------------------------------------------------------------------------
#-----------------------------------------------------------------------------------------------------------------------------------------




#These plot the new stations and the button to run the simulation
p.on_event(DoubleTap, callback)
button_widget.on_event(ButtonClick, callbackSimRun)

#This sets the layout of the plot
layout=Column(p,widgetbox(button_widget))

#This updates the plot to the server
curdoc().add_root(layout)
Exemple #11
0
def bar_cam(sni_csub, sni_dsub):
    # make data sources
    def make_camr_src(cmr):
        data = {
            'NVF': sni_csub[sni_csub['CAMR'] == cmr]['NVF'],
            'NB': sni_csub[sni_csub['CAMR'] == cmr]['Count']
        }
        return data

    def make_dr_src(dr):
        data = {
            'NVF': sni_dsub[sni_dsub['DR'] == dr]['NVF'],
            'NB': sni_dsub[sni_dsub['DR'] == dr]['Count']
        }
        return data

    # make plots

    def make_plots(src1, src2):
        nvf = list(sni_csub['NVF'].unique())
        color_map = factor_cmap(field_name='NVF', palette=GnBu[8], factors=nvf)

        # define figure and plot p1

        p1 = figure(
            title='Répartition du PTF de la CAM CORPORATE par classe de risque',
            plot_height=450,
            plot_width=600,
            x_axis_label='Rating Class',
            y_axis_label='Number of rated clients',
            x_range=nvf,
            toolbar_location='below')
        p1.vbar(x='NVF', top='NB', source=src1, width=0.5, color='#2B7C75')
        #p1.line('NVF', 'NB', source=src1, color='red')
        p1.toolbar.active_drag = None
        hover1 = HoverTool(tooltips=[('NVF', '@NVF'), ('NB Rated', '@NB')])
        p1.add_tools(hover1)
        labels1 = LabelSet(x='NVF',
                           y='NB',
                           text='NB',
                           level='glyph',
                           x_offset=0,
                           y_offset=1,
                           source=src1,
                           render_mode='canvas',
                           text_align='center',
                           text_font_style='bold',
                           text_font_size='10pt')
        p1.add_layout(labels1)

        # define figure and plot p2

        p2 = figure(
            title='Répartition du PTF de la CAM CORPORATE par classe de risque',
            plot_height=450,
            plot_width=600,
            x_axis_label='Rating Class',
            y_axis_label='Number of rated clients',
            x_range=nvf,
            toolbar_location='below')
        p2.vbar(x='NVF', top='NB', source=src2, width=0.5, color='#2D7D3E')
        #p2.line('NVF', 'NB', source=src2, color='black')
        p2.toolbar.active_drag = None
        hover2 = HoverTool(tooltips=[('NVF', '@NVF'), ('NB Rated', '@NB')])
        p2.add_tools(hover2)
        labels2 = LabelSet(x='NVF',
                           y='NB',
                           text='NB',
                           level='glyph',
                           x_offset=0,
                           y_offset=1,
                           source=src2,
                           render_mode='canvas',
                           text_align='center',
                           text_font_style='bold',
                           text_font_size='10pt')
        p2.add_layout(labels2)

        return p1, p2

    # plot style

    def style(p):
        p.xgrid.visible = False
        p.ygrid.visible = False
        p.yaxis.visible = False
        # title
        p.title.align = 'center'
        p.title.text_font_size = '12pt'
        p.title.text_font = 'times'

        # Axis titles
        p.xaxis.axis_label_text_font_size = '11pt'
        p.xaxis.axis_label_text_font_style = 'bold italic'
        p.yaxis.axis_label_text_font_size = '11pt'
        p.yaxis.axis_label_text_font_style = 'bold italic'

        # Tick labels
        p.xaxis.major_label_text_font_size = '9pt'
        p.yaxis.major_label_text_font_size = '9pt'
        p.border_fill_color = None
        p.outline_line_color = None

        return p

    # callback 1
    def update_plot1(attr, old, new):
        # read the current value of the dropdown
        cmr = camr_select.value
        # set new_data
        new_data = make_camr_src(cmr)

        # Assign new_data to the original source
        src1.data = new_data
        p1.title.text = 'Répartition du PTF de la %s par classe de risque' % cmr

    # callback 2
    def update_plot2(attr, old, new):
        # read the current value of the dropdown
        dr = dr_select.value
        # set new_data
        new_data = make_dr_src(dr)

        # Assign new_data to the original source
        src2.data = new_data
        p2.title.text = 'Répartition du PTF de la %s par classe de risque' % dr

    def table(src1, src2):
        col1 = [
            TableColumn(field='NVF', title='Rating Class'),
            TableColumn(field='NB', title='Clients Rated')
        ]
        tbl1 = DataTable(source=src1, columns=col1, editable=True, width=600)

        col2 = [
            TableColumn(field='NVF', title='Rating Class'),
            TableColumn(field='NB', title='Clients Rated')
        ]
        tbl2 = DataTable(source=src2, columns=col2, editable=True, width=600)

        return tbl1, tbl2

    camr_select = Select(options=list(sni_csub['CAMR'].unique()),
                         value='CAM CORPORATE',
                         title='Choisir une CAM Region')
    # attach the update to the value
    camr_select.on_change('value', update_plot1)

    dr_select = Select(options=list(sni_dsub['DR'].unique()),
                       value='CAM CORPORATE',
                       title='Choisir une DR')
    # attach the update to the value
    dr_select.on_change('value', update_plot2)
    camr_select.width = 600
    # Data

    data1 = make_camr_src(camr_select.value)
    data2 = make_dr_src(dr_select.value)

    src1 = ColumnDataSource(data=data1)
    src2 = ColumnDataSource(data=data2)

    p1, p2 = make_plots(src1, src2)
    p1 = style(p1)
    p2 = style(p2)
    tbl1, tbl2 = table(src1, src2)

    layout = row([
        column([Column(camr_select, width=500), p1, tbl1]),
        column([Column(dr_select, width=500), p2, tbl2])
    ])

    tab = Panel(child=layout, title='Rating class distribution')

    return tab
def plot_3DModel_bokeh(filename, map_data_all_slices, map_depth_all_slices, \
                       color_range_all_slices, profile_data_all, boundary_data, \
                       style_parameter):
    '''
    Plot shear velocity maps and velocity profiles using bokeh

    Input:
        filename is the filename of the resulting html file
        map_data_all_slices contains the velocity model parameters saved for map view plots
        map_depth_all_slices is a list of depths
        color_range_all_slices is a list of color ranges
        profile_data_all constains the velocity model parameters saved for profile plots
        boundary_data is a list of boundaries
        style_parameter contains plotting parameters

    Output:
        None
    
    '''
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    #
    colorbar_data_all_left = []
    colorbar_data_all_right = []
    map_view_ndepth = style_parameter['map_view_ndepth']
    ncolor = len(palette)
    colorbar_top = [0.1 for i in range(ncolor)]
    colorbar_bottom = [0 for i in range(ncolor)]
    map_data_all_slices_depth = []
    for idepth in range(map_view_ndepth): 
        color_min = color_range_all_slices[idepth][0]
        color_max = color_range_all_slices[idepth][1]
        color_step = (color_max - color_min)*1./ncolor
        colorbar_left = np.linspace(color_min,color_max-color_step,ncolor)
        colorbar_right = np.linspace(color_min+color_step,color_max,ncolor)
        colorbar_data_all_left.append(colorbar_left)
        colorbar_data_all_right.append(colorbar_right)
        map_depth = map_depth_all_slices[idepth]
        map_data_all_slices_depth.append('Depth: {0:8.1f} km'.format(map_depth))
    #
    palette_r = palette[::-1]
    # data for the colorbar
    colorbar_data_one_slice = {}
    colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[style_parameter['map_view_default_index']]
    colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[style_parameter['map_view_default_index']]
    colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,\
                                                               colorbar_left=colorbar_data_one_slice['colorbar_left'],\
                                                               colorbar_right=colorbar_data_one_slice['colorbar_right'],\
                                                               palette_r=palette_r))
    colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\
                                                                colorbar_data_all_right=colorbar_data_all_right))
    #
    map_view_label_lon = style_parameter['map_view_depth_label_lon']
    map_view_label_lat = style_parameter['map_view_depth_label_lat']
    map_data_one_slice_depth = map_data_all_slices_depth[style_parameter['map_view_default_index']]
    map_data_one_slice_depth_bokeh = ColumnDataSource(data=dict(lat=[map_view_label_lat], lon=[map_view_label_lon],
                                                           map_depth=[map_data_one_slice_depth],
                                                           left=[style_parameter['profile_plot_xmin']], \
                                                           right=[style_parameter['profile_plot_xmax']]))
    
    #
    map_view_default_index = style_parameter['map_view_default_index']
    #map_data_one_slice = map_data_all_slices[map_view_default_index]
    #
    map_color_all_slices = []
    for i in range(len(map_data_all_slices)):
        vmin, vmax = color_range_all_slices[i]
        map_color = val_to_rgb(map_data_all_slices[i], palette_r, vmin, vmax)
        map_color_all_slices.append(map_color)
    map_color_one_slice = map_color_all_slices[map_view_default_index]
    #
    map_data_one_slice_bokeh = ColumnDataSource(data=dict(x=[style_parameter['map_view_image_lon_min']],\
                   y=[style_parameter['map_view_image_lat_min']],dw=[style_parameter['nlon']*style_parameter['dlon']],\
                   dh=[style_parameter['nlat']*style_parameter['dlat']],map_data_one_slice=[map_color_one_slice]))
    map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices=map_color_all_slices,\
                                                           map_data_all_slices_depth=map_data_all_slices_depth))
    # ------------------------------
    nprofile = len(profile_data_all)
    grid_lat_list = []
    grid_lon_list = []
    width_list = []
    height_list = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        grid_lat_list.append(aprofile['lat'])
        grid_lon_list.append(aprofile['lon'])
        width_list.append(style_parameter['map_view_grid_width'])
        height_list.append(style_parameter['map_view_grid_height'])
    grid_data_bokeh = ColumnDataSource(data=dict(lon=grid_lon_list,lat=grid_lat_list,\
                                            width=width_list, height=height_list))
    profile_default_index = style_parameter['profile_default_index']
    selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[grid_lat_list[profile_default_index]], \
                                                           lon=[grid_lon_list[profile_default_index]], \
                                                           width=[style_parameter['map_view_grid_width']],\
                                                           height=[style_parameter['map_view_grid_height']],\
                                                           index=[profile_default_index]))
    # ------------------------------
    profile_vs_all = []
    profile_depth_all = []
    profile_ndepth = style_parameter['profile_ndepth']
    profile_lat_label_list = []
    profile_lon_label_list = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        vs_raw = aprofile['vs']
        top_raw = aprofile['top']
        profile_lat_label_list.append('Lat: {0:12.1f}'.format(aprofile['lat']))
        profile_lon_label_list.append('Lon: {0:12.1f}'.format(aprofile['lon']))
        vs_plot = []
        depth_plot = []
        for idepth in range(profile_ndepth):
            vs_plot.append(vs_raw[idepth])
            depth_plot.append(top_raw[idepth])
            vs_plot.append(vs_raw[idepth])
            depth_plot.append(top_raw[idepth+1])
        profile_vs_all.append(vs_plot)
        profile_depth_all.append(depth_plot)
    profile_data_all_bokeh = ColumnDataSource(data=dict(profile_vs_all=profile_vs_all, \
                                                        profile_depth_all=profile_depth_all))
    selected_profile_data_bokeh = ColumnDataSource(data=dict(vs=profile_vs_all[profile_default_index],\
                                                             depth=profile_depth_all[profile_default_index]))
    selected_profile_lat_label_bokeh = ColumnDataSource(data=\
                                dict(x=[style_parameter['profile_lat_label_x']], y=[style_parameter['profile_lat_label_y']],\
                                    lat_label=[profile_lat_label_list[profile_default_index]]))
    selected_profile_lon_label_bokeh = ColumnDataSource(data=\
                                dict(x=[style_parameter['profile_lon_label_x']], y=[style_parameter['profile_lon_label_y']],\
                                    lon_label=[profile_lon_label_list[profile_default_index]]))
    all_profile_lat_label_bokeh = ColumnDataSource(data=dict(profile_lat_label_list=profile_lat_label_list))
    all_profile_lon_label_bokeh = ColumnDataSource(data=dict(profile_lon_label_list=profile_lon_label_list))
    #
    button_ndepth = style_parameter['button_ndepth']
    button_data_all_vs = []
    button_data_all_vp = []
    button_data_all_rho = []
    button_data_all_top = []
    for iprofile in range(nprofile):
        aprofile = profile_data_all[iprofile]
        button_data_all_vs.append(aprofile['vs'][:button_ndepth])
        button_data_all_vp.append(aprofile['vp'][:button_ndepth])
        button_data_all_rho.append(aprofile['rho'][:button_ndepth])
        button_data_all_top.append(aprofile['top'][:button_ndepth])
    button_data_all_bokeh = ColumnDataSource(data=dict(button_data_all_vs=button_data_all_vs,\
                                                       button_data_all_vp=button_data_all_vp,\
                                                       button_data_all_rho=button_data_all_rho,\
                                                       button_data_all_top=button_data_all_top))
    # ==============================
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], plot_height=style_parameter['map_view_plot_height'], \
                      tools=style_parameter['map_view_tools'], title=style_parameter['map_view_title'], \
                      y_range=[style_parameter['map_view_figure_lat_min'], style_parameter['map_view_figure_lat_max']],\
                      x_range=[style_parameter['map_view_figure_lon_min'], style_parameter['map_view_figure_lon_max']])
    #
    map_view.image_rgba('map_data_one_slice',x='x',\
                   y='y',dw='dw',dh='dh',
                   source=map_data_one_slice_bokeh, level='image')

    depth_slider_callback = CustomJS(args=dict(map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                               map_data_all_slices_bokeh=map_data_all_slices_bokeh,\
                                               colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh,\
                                               colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\
                                               map_data_one_slice_depth_bokeh=map_data_one_slice_depth_bokeh), code="""

        var d_index = Math.round(cb_obj.value)
        
        var map_data_all_slices = map_data_all_slices_bokeh.data
        
        map_data_one_slice_bokeh.data['map_data_one_slice'] = [map_data_all_slices['map_data_all_slices'][d_index]]
        map_data_one_slice_bokeh.change.emit()
        
        var color_data_all_slices = colorbar_data_all_slices_bokeh.data
        colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][d_index]
        colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][d_index]
        colorbar_data_one_slice_bokeh.change.emit()
        
        map_data_one_slice_depth_bokeh.data['map_depth'] = [map_data_all_slices['map_data_all_slices_depth'][d_index]]
        map_data_one_slice_depth_bokeh.change.emit()
        
    """) 
    depth_slider = Slider(start=0, end=style_parameter['map_view_ndepth']-1, \
                          value=map_view_default_index, step=1, \
                          width=style_parameter['map_view_plot_width'],\
                          title=style_parameter['depth_slider_title'], height=50, \
                          callback=depth_slider_callback)
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # ------------------------------
    # add depth label
    map_view.rect(style_parameter['map_view_depth_box_lon'], style_parameter['map_view_depth_box_lat'], \
                  width=style_parameter['map_view_depth_box_width'], height=style_parameter['map_view_depth_box_height'], \
                  width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    map_view.text('lon', 'lat', 'map_depth', source=map_data_one_slice_depth_bokeh,\
                  text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay')
    # ------------------------------
    map_view.rect('lon', 'lat', width='width', \
                  width_units='screen', height='height', \
                  height_units='screen', line_color='gray', line_alpha=0.5, \
                  selection_line_color='gray', selection_line_alpha=0.5, selection_fill_color=None,\
                  nonselection_line_color='gray',nonselection_line_alpha=0.5, nonselection_fill_color=None,\
                  source=grid_data_bokeh, color=None, line_width=1, level='glyph')
    map_view.rect('lon', 'lat',width='width', \
                  width_units='screen', height='height', \
                  height_units='screen', line_color='#00ff00', line_alpha=1.0, \
                  source=selected_dot_on_map_bokeh, fill_color=None, line_width=3.,level='glyph')
    # ------------------------------
    grid_data_js = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh, \
                                                  grid_data_bokeh=grid_data_bokeh,\
                                                  profile_data_all_bokeh=profile_data_all_bokeh,\
                                                  selected_profile_data_bokeh=selected_profile_data_bokeh,\
                                                  selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\
                                                  selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \
                                                  all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \
                                                  all_profile_lon_label_bokeh=all_profile_lon_label_bokeh, \
                                                 ), code="""
        
        var inds = cb_obj.indices
        
        var grid_data = grid_data_bokeh.data
        selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][inds]]
        selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][inds]]
        selected_dot_on_map_bokeh.data['index'] = [inds]
        selected_dot_on_map_bokeh.change.emit()
        
        var profile_data_all = profile_data_all_bokeh.data
        selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][inds]
        selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][inds]
        selected_profile_data_bokeh.change.emit()
        
        var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list']
        var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list']
        selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[inds]]
        selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[inds]]
        selected_profile_lat_label_bokeh.change.emit()
        selected_profile_lon_label_bokeh.change.emit()
    """)
    grid_data_bokeh.selected.js_on_change('indices', grid_data_js)
    # ------------------------------
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # ==============================
    # plot colorbar
    colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig.toolbar_location=None
    colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\
                  color='palette_r',source=colorbar_data_one_slice_bokeh)
    colorbar_fig.yaxis[0].ticker=FixedTicker(ticks=[])
    colorbar_fig.xgrid.grid_line_color = None
    colorbar_fig.ygrid.grid_line_color = None
    colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig.title.text_font_size = xlabel_fontsize
    colorbar_fig.title.align = 'center'
    colorbar_fig.title.text_font_style = 'normal'
    # ==============================
    profile_xrange = Range1d(start=style_parameter['profile_plot_xmin'], end=style_parameter['profile_plot_xmax'])
    profile_yrange = Range1d(start=style_parameter['profile_plot_ymax'], end=style_parameter['profile_plot_ymin'])
    profile_fig = Figure(plot_width=style_parameter['profile_plot_width'], plot_height=style_parameter['profile_plot_height'],\
                         x_range=profile_xrange, y_range=profile_yrange, tools=style_parameter['profile_tools'],\
                         title=style_parameter['profile_title'])
    profile_fig.line('vs','depth',source=selected_profile_data_bokeh, line_width=2, line_color='black')
    # ------------------------------
    # add lat, lon
    profile_fig.rect([style_parameter['profile_label_box_x']], [style_parameter['profile_label_box_y']],\
                     width=style_parameter['profile_label_box_width'], height=style_parameter['profile_label_box_height'],\
                     width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black',\
                     level='underlay')
    profile_fig.text('x','y','lat_label', source=selected_profile_lat_label_bokeh)
    profile_fig.text('x','y','lon_label', source=selected_profile_lon_label_bokeh)
    # ------------------------------
    # change style
    profile_fig.xaxis.axis_label = style_parameter['profile_xlabel']
    profile_fig.xaxis.axis_label_text_font_style = 'normal'
    profile_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    profile_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    profile_fig.yaxis.axis_label = style_parameter['profile_ylabel']
    profile_fig.yaxis.axis_label_text_font_style = 'normal'
    profile_fig.yaxis.axis_label_text_font_size = xlabel_fontsize
    profile_fig.yaxis.major_label_text_font_size = xlabel_fontsize
    profile_fig.xgrid.grid_line_dash = [4, 2]
    profile_fig.ygrid.grid_line_dash = [4, 2]
    profile_fig.title.text_font_size = style_parameter['title_font_size']
    profile_fig.title.align = 'center'
    profile_fig.title.text_font_style = 'normal'
    profile_fig.toolbar_location = 'above'
    profile_fig.toolbar_sticky = False
    profile_fig.toolbar.logo = None
    # ==============================
    profile_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                 grid_data_bokeh=grid_data_bokeh, \
                                                 profile_data_all_bokeh=profile_data_all_bokeh, \
                                                 selected_profile_data_bokeh=selected_profile_data_bokeh,\
                                                 selected_profile_lat_label_bokeh=selected_profile_lat_label_bokeh,\
                                                 selected_profile_lon_label_bokeh=selected_profile_lon_label_bokeh, \
                                                 all_profile_lat_label_bokeh=all_profile_lat_label_bokeh, \
                                                 all_profile_lon_label_bokeh=all_profile_lon_label_bokeh), code="""
        var p_index = Math.round(cb_obj.value)
        
        var grid_data = grid_data_bokeh.data
        selected_dot_on_map_bokeh.data['lat'] = [grid_data['lat'][p_index]]
        selected_dot_on_map_bokeh.data['lon'] = [grid_data['lon'][p_index]]
        selected_dot_on_map_bokeh.data['index'] = [p_index]
        selected_dot_on_map_bokeh.change.emit()
        
        var profile_data_all = profile_data_all_bokeh.data
        selected_profile_data_bokeh.data['vs'] = profile_data_all['profile_vs_all'][p_index]
        selected_profile_data_bokeh.data['depth'] = profile_data_all['profile_depth_all'][p_index]
        selected_profile_data_bokeh.change.emit()
        
        var all_profile_lat_label = all_profile_lat_label_bokeh.data['profile_lat_label_list']
        var all_profile_lon_label = all_profile_lon_label_bokeh.data['profile_lon_label_list']
        selected_profile_lat_label_bokeh.data['lat_label'] = [all_profile_lat_label[p_index]]
        selected_profile_lon_label_bokeh.data['lon_label'] = [all_profile_lon_label[p_index]]
        selected_profile_lat_label_bokeh.change.emit()
        selected_profile_lon_label_bokeh.change.emit()
        
    """)
    profile_slider = Slider(start=0, end=nprofile-1, value=style_parameter['profile_default_index'], \
                           step=1, title=style_parameter['profile_slider_title'], \
                           width=style_parameter['profile_plot_width'], height=50,\
                           callback=profile_slider_callback)
    profile_slider_callback.args['profile_index'] = profile_slider
    # ==============================
    simple_text_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\
                                                    selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \
                                           code="""
        var index = selected_dot_on_map_bokeh.data['index']
        
        var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index]
        var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index]
        var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index]
        var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index]
        
        var csvContent = "data:text;charset=utf-8,"
        var i = 0
        var temp = csvContent
        temp += "# Layer Top (km)      Vs(km/s)    Vp(km/s)    Rho(g/cm^3) \\n"
        while(button_data_vp[i]) {
            temp+=button_data_top[i].toPrecision(6) + "    " + button_data_vs[i].toPrecision(4) + "   " + \
                    button_data_vp[i].toPrecision(4) + "   " + button_data_rho[i].toPrecision(4) + "\\n"
            i = i + 1
        }
        var encodedUri = encodeURI(temp)
        link = document.createElement('a');
        link.setAttribute('href', encodedUri);
        link.setAttribute('download', 'vel_model.txt');
        link.click();
        
    """)

    simple_text_button = Button(label=style_parameter['simple_text_button_label'], button_type='default', width=style_parameter['button_width'],\
                                callback=simple_text_button_callback)
    # ------------------------------
    model96_button_callback = CustomJS(args=dict(button_data_all_bokeh=button_data_all_bokeh,\
                                                    selected_dot_on_map_bokeh=selected_dot_on_map_bokeh), \
                                           code="""
        var index = selected_dot_on_map_bokeh.data['index']
        var lat = selected_dot_on_map_bokeh.data['lat']
        var lon = selected_dot_on_map_bokeh.data['lon']
        
        var button_data_vs = button_data_all_bokeh.data['button_data_all_vs'][index]
        var button_data_vp = button_data_all_bokeh.data['button_data_all_vp'][index]
        var button_data_rho = button_data_all_bokeh.data['button_data_all_rho'][index]
        var button_data_top = button_data_all_bokeh.data['button_data_all_top'][index]
        
        var csvContent = "data:text;charset=utf-8,"
        var i = 0
        var temp = csvContent
        temp +=  "MODEL." + index + " \\n"
        temp +=  "ShearVelocityModel Lat: "+ lat +"  Lon: " + lon + "\\n"
        temp +=  "ISOTROPIC \\n"
        temp +=  "KGS \\n"
        temp +=  "SPHERICAL EARTH \\n"
        temp +=  "1-D \\n"
        temp +=  "CONSTANT VELOCITY \\n"
        temp +=  "LINE08 \\n"
        temp +=  "LINE09 \\n"
        temp +=  "LINE10 \\n"
        temp +=  "LINE11 \\n"
        temp +=  "      H(KM)   VP(KM/S)   VS(KM/S) RHO(GM/CC)     QP         QS       ETAP       ETAS      FREFP      FREFS \\n"
        while(button_data_vp[i+1]) {
            var thickness = button_data_top[i+1] - button_data_top[i]
            temp+="      " +thickness.toPrecision(6) + "    " + button_data_vp[i].toPrecision(4) + "      " + button_data_vs[i].toPrecision(4) \
                 + "      " + button_data_rho[i].toPrecision(4) + "     0.00       0.00       0.00       0.00       1.00       1.00" + "\\n"
            i = i + 1
        }
        var encodedUri = encodeURI(temp)
        link = document.createElement('a');
        link.setAttribute('href', encodedUri);
        link.setAttribute('download', 'vel_model96.txt');
        link.click();
    """)
    model96_button = Button(label=style_parameter['model96_button_label'], button_type='default', width=style_parameter['button_width'],\
                                callback=model96_button_callback)
    # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text=style_parameter['annotating_html02'],\
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    output_file(filename,title=style_parameter['html_title'], mode=style_parameter['library_source'])
    left_column = Column(depth_slider, map_view, colorbar_fig, annotating_fig01, width=style_parameter['left_column_width'])
    button_pannel = Row(simple_text_button, model96_button)
    right_column = Column(profile_slider, profile_fig, button_pannel, annotating_fig02, width=style_parameter['right_column_width'])
    layout = Row(left_column, right_column)
    save(layout)
Exemple #13
0
        ys=[[y0,   y0,     Y[i+1], Y[i]] for i in range(len(Y[:-1])) ],
        color=data.colors[:-1]
    ))
    patches = Patches(xs="xs", ys="ys", fill_color="color", line_color="color")
    plot.add_glyph(patches_source, patches)

    line_source = ColumnDataSource(dict(x=data.dist, y=data.alt))
    line = Line(x='x', y='y', line_color="black", line_width=1)
    plot.add_glyph(line_source, line)

    return plot

data = prep_data(obiszow_mtb_xcm)

trail = trail_map(data)

altitude = altitude_profile(data)

layout = Column(children=[altitude, trail])

doc = Document()
doc.add_root(layout)

if __name__ == "__main__":
    doc.validate()
    filename = "trail.html"
    with open(filename, "w") as f:
        f.write(file_html(doc, INLINE, "Trail map and altitude profile"))
    print("Wrote %s" % filename)
    view(filename)
def Zancada(DatosBokeh, EjeX, MetricasAuxiliares):
    """
        GRAFICO DISCRETO | LONGITUD DE ZANCADA
    """

    # Creacion del diccionario de metricas auxiliares
    DiccionarioVariables = ParametrosVariables(DatosBokeh)

    # Generacion del codigo JavaScript que habilita la visualizacion de metricas auxiliares
    CodigoJS = GeneracionCodigoJS(MetricasAuxiliares)

    # Asignacion de tamaño del punto en graficas discretas
    SizeCircle = FunctionSizeCircle(DatosBokeh)

    # Creacion de un grafica
    PLT = figure(width=1000,
                 height=400,
                 x_range=(DatosBokeh.data[EjeX].min(),
                          DatosBokeh.data[EjeX].max()),
                 y_range=(LimiteEjeY(DatosBokeh, 'LONGITUD ZANCADA',
                                     'Inferior'),
                          LimiteEjeY(DatosBokeh, 'LONGITUD ZANCADA',
                                     'Superior')),
                 tools='',
                 toolbar_location=None)

    # Inclusion de datos
    PLT.circle(EjeX,
               'LongitudZancada[m]',
               source=DatosBokeh,
               size=SizeCircle,
               line_color=transform(
                   'LongitudZancada[m]',
                   LinearColorMapper(palette=PaletaColoresLinea,
                                     low=0.8,
                                     high=2)),
               color=transform(
                   'LongitudZancada[m]',
                   LinearColorMapper(palette=PaletaColores, low=0.8, high=2)),
               fill_alpha=1)
    PLT_Linea = PLT.line(EjeX,
                         'LongitudZancada[m]',
                         source=DatosBokeh,
                         color='white',
                         line_width=0,
                         line_alpha=0)
    PLT.add_tools(
        HoverTool(tooltips=[('', '@{LongitudZancada[m]}{0,0.00} m')],
                  renderers=[PLT_Linea],
                  mode='vline'))

    # Inclusion de lineas auxiliares
    ListadoMetricasAuxiliares = {}
    for Metrica in MetricasAuxiliares:
        if DiccionarioVariables[Metrica]['Tipo'] == 'circle':
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.circle(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['LONGITUD ZANCADA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    size=SizeCircle,
                    line_color=DiccionarioVariables[Metrica]['Color'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])
        elif DiccionarioVariables[Metrica]['Tipo'] == 'step':
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.step(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['LONGITUD ZANCADA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])
        else:
            ListadoMetricasAuxiliares[
                'l' + str(MetricasAuxiliares.index(Metrica))] = PLT.line(
                    EjeX,
                    DiccionarioVariables[Metrica]['Variable'].split('[', 1)[0]
                    + DiccionarioVariables['LONGITUD ZANCADA']['Sufijo'],
                    source=DiccionarioVariables[Metrica]['CDS'],
                    color=DiccionarioVariables[Metrica]['Color'],
                    **DiccionarioVariables[Metrica]['Propiedades'])

    # Atributos
    PLT.title.text = 'LONGITUD DE ZANCADA'
    PLT.sizing_mode = 'fixed'
    PLT.yaxis.axis_label = 'Longitud de zancada [m]'
    PLT.yaxis.formatter = NumeralTickFormatter(format='0.0')
    PLT.grid.visible = False
    PLT.yaxis.minor_tick_line_color = None

    # Asignacion de opciones de visualizacion del eje X
    if EjeX == 'Distancia[m]':
        PLT.xaxis.axis_label = 'Distancia'
        PLT.xaxis.formatter = NumeralTickFormatter(format='0')
        if DatosBokeh.data['Distancia[m]'].max() >= 4000:
            PLT.xaxis.ticker = SingleIntervalTicker(interval=1000)
            PLT.xaxis.major_label_overrides = FormateoEjes(
                DatosBokeh.data['Distancia[m]'], 1000, 1000, 0, 0)
    elif EjeX == 'TiempoActividad':
        PLT.xaxis.axis_label = 'Tiempo actividad'
        PLT.xaxis.formatter = DatetimeTickFormatter(hourmin='%H:%M:%S',
                                                    minutes='%M:%S',
                                                    seconds='%Ss')
        PLT.xaxis.ticker = DatetimeTicker()
    elif EjeX == 'TiempoTotal':
        PLT.xaxis.axis_label = 'Tiempo total'
        PLT.xaxis.formatter = DatetimeTickFormatter(hourmin='%H:%M:%S',
                                                    minutes='%M:%S',
                                                    seconds='%Ss')
        PLT.xaxis.ticker = DatetimeTicker()

    #Botones
    Botones = CheckboxGroup(labels=MetricasAuxiliares,
                            active=[],
                            width=100,
                            height=380)
    ListadoMetricasAuxiliares['checkbox'] = Botones
    CodigoJSFrecuenciaCardiaca = CustomJS(code=CodigoJS,
                                          args=ListadoMetricasAuxiliares)
    Botones.js_on_click(CodigoJSFrecuenciaCardiaca)

    #Layout
    GridBotones = layout(
        [Spacer(width=100, height=25),
         Column(Botones, width=100, height=375)],
        sizing_mode='fixed',
        width=100,
        height=400)
    GridGrafica = gridplot([PLT, GridBotones],
                           ncols=2,
                           sizing_mode='stretch_width',
                           toolbar_location=None,
                           plot_width=1100,
                           plot_height=400)

    return GridGrafica
Exemple #15
0
checkbox_group = CheckboxGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
checkbox_group.js_on_click(CustomJS(code="console.log('checkbox_group: active=' + this.active, this.toString())"))

radio_group = RadioGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)
radio_group.js_on_click(CustomJS(code="console.log('radio_group: active=' + this.active, this.toString())"))

checkbox_button_group = CheckboxButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=[0, 1])
checkbox_button_group.js_on_click(CustomJS(code="console.log('checkbox_button_group: active=' + this.active, this.toString())"))

radio_button_group = RadioButtonGroup(labels=["Option 1", "Option 2", "Option 3"], active=0)
radio_button_group.js_on_click(CustomJS(code="console.log('radio_button_group: active=' + this.active, this.toString())"))

widget_box = Column(children=[
    button, button_disabled,
    toggle_inactive, toggle_active,
    dropdown, dropdown_disabled, dropdown_split,
    checkbox_group, radio_group,
    checkbox_button_group, radio_button_group,
])

doc = Document()
doc.add_root(widget_box)

if __name__ == "__main__":
    doc.validate()
    filename = "buttons.html"
    with open(filename, "w") as f:
        f.write(file_html(doc, INLINE, "Button widgets"))
    print("Wrote %s" % filename)
    view(filename)
bar_chart_source = ColumnDataSource(data=bar_chart_data)
bar_chart = create_bar_chart(bar_chart_data, bar_chart_source)

stacked_chart_positive_data = wrangle_pos_data_for_stacked_chart(user_inputs)
stacked_chart_negative_data = wrangle_neg_data_for_stacked_chart(user_inputs)
stacked_chart_positive_source = ColumnDataSource(
    data=stacked_chart_positive_data)
stacked_chart_negative_source = ColumnDataSource(
    data=stacked_chart_negative_data)
stacked_chart = create_stacked_chart(
    stacked_chart_positive_data,
    stacked_chart_negative_data,
    stacked_chart_positive_source,
    stacked_chart_negative_source,
)

inputs = Column(change_air_travel_slider, )

# layout of charts
bar_chart.margin = (0, 0, 15, 0)
stacked_chart.margin = (0, 0, 15, 0)

charts = column(
    bar_chart,
    stacked_chart,
    sizing_mode="stretch_width",
    margin=(0, 15, 0, 15),
)
# doc.theme = Theme(filename="main/static/main/ghg_bokeh_theme.yaml")
curdoc().add_root(layout([[inputs, charts]], css_classes=["center"]))

def compute(t):
    value = np.sin(xx / 50 + t / 10) * np.cos(yy / 50 + t / 10) * 50 + 50
    return dict(x=xx, y=yy, z=value, color=value)


source = ColumnDataSource(data=compute(0))

content_filename = join(dirname(__file__), "description.html")

description = Div(text=open(content_filename).read(),
                  render_as_text=False,
                  width=600)

surface = Surface3d(x="x", y="y", z="z", color="color", data_source=source)

curdoc().add_root(Column(description, surface))


@count()
def update(t):
    source.data = compute(t)


curdoc().add_periodic_callback(update, 100)
curdoc().title = "Surface3dYo"

session = push_session(curdoc(), url="http://127.0.0.1:5006/extension_loader")
session.show()  # open the document in a browser
session.loop_until_closed()  # run forever
Exemple #18
0
    source.data = { value: [cb_obj.value] }
""")
exposure_controls.append(sn_slider)

noise_slider = Slider(title="Noise to Add In",
                      value=500,
                      start=0.0,
                      end=1000.0,
                      step=50.0,
                      callback_policy='mouseup')
noise_slider.callback = CustomJS(args=dict(source=fake_callback_source3),
                                 code="""
    source.data = { value: [cb_obj.value] }
""")
#exposure_controls.append(noise_slider)

sp.set_plot_options(
    plot.state
)  # plot.state has bokeh type Figure, so can be manipulated in the usual way

astro_tab = Panel(child=Column(children=astro_controls), title='Stars')
exposure_tab = Panel(child=Column(children=exposure_controls),
                     title='Exposure')
info_tab = Panel(child=Div(text=h.help(), width=300), title='Info')
visual_tab = Panel(child=Column(children=[widget]), title='Visuals')
controls = Tabs(tabs=[astro_tab, exposure_tab, visual_tab, info_tab],
                width=400)

layout = layout([[controls, plot.state]], sizing_mode='fixed')
curdoc().add_root(layout)
Exemple #19
0
    def initialize_plot(self, plots=None, ranges=None):
        ranges = self.compute_ranges(self.layout, self.keys[-1], None)
        passed_plots = [] if plots is None else plots
        plots = [[] for _ in range(self.rows)]
        tab_titles = {}
        insert_rows, insert_cols = [], []
        offset = 0
        for r, c in self.coords:
            subplot = self.subplots.get((r, c), None)
            if subplot is not None:
                shared_plots = passed_plots if self.shared_axes else None
                subplots = subplot.initialize_plot(ranges=ranges,
                                                   plots=shared_plots)

                # Computes plotting offsets depending on
                # number of adjoined plots
                offset = sum(r >= ir for ir in insert_rows)
                if len(subplots) > 2:
                    # Add pad column in this position
                    insert_cols.append(c)
                    if r not in insert_rows:
                        # Insert and pad marginal row if none exists
                        plots.insert(r + offset,
                                     [None for _ in range(len(plots[r]))])
                        # Pad previous rows
                        for ir in range(r):
                            plots[ir].insert(c + 1, None)
                        # Add to row offset
                        insert_rows.append(r)
                        offset += 1
                    # Add top marginal
                    plots[r + offset - 1] += [subplots.pop(-1), None]
                elif len(subplots) > 1:
                    # Add pad column in this position
                    insert_cols.append(c)
                    # Pad previous rows
                    for ir in range(r):
                        plots[r].insert(c + 1, None)
                    # Pad top marginal if one exists
                    if r in insert_rows:
                        plots[r + offset - 1] += 2 * [None]
                else:
                    # Pad top marginal if one exists
                    if r in insert_rows:
                        plots[r + offset - 1] += [None] * (1 +
                                                           (c in insert_cols))
                plots[r + offset] += subplots
                if len(subplots) == 1 and c in insert_cols:
                    plots[r + offset].append(None)
                passed_plots.append(subplots[0])
                if self.tabs:
                    title = subplot.subplots['main']._format_title(
                        self.keys[-1], dimensions=False)
                    if not title:
                        title = ' '.join(self.paths[r, c])
                    tab_titles[r, c] = title
            else:
                plots[r + offset] += [empty_plot(0, 0)]

        # Replace None types with empty plots
        # to avoid bokeh bug
        plots = layout_padding(plots, self.renderer)

        # Wrap in appropriate layout model
        kwargs = dict(sizing_mode=self.sizing_mode)
        if self.tabs:
            panels = [
                Panel(child=child, title=str(tab_titles.get((r, c))))
                for r, row in enumerate(plots) for c, child in enumerate(row)
                if child is not None
            ]
            layout_plot = Tabs(tabs=panels)
        else:
            plots = filter_toolboxes(plots)
            plots, width = pad_plots(plots)
            layout_plot = gridplot(children=plots,
                                   width=width,
                                   toolbar_location=self.toolbar,
                                   merge_tools=self.merge_tools,
                                   **kwargs)

        title = self._get_title(self.keys[-1])
        if title:
            self.handles['title'] = title
            layout_plot = Column(title, layout_plot, **kwargs)

        self.handles['plot'] = layout_plot
        self.handles['plots'] = plots

        self._update_callbacks(layout_plot)
        if self.shared_datasource:
            self.sync_sources()

        self.drawn = True

        return self.handles['plot']
Exemple #20
0
    if not warning_devices:
        alarm.visible = False
        alarm_list.visible = False

    t += 1


layout = layout([[fig_tanque3, fig_tanque4], [fig_tanque1, fig_tanque2],
                 [fig_vol1, fig_vol2]])

panel1 = Panel(child=row(
    Column(
        label1,
        row(Column(dataRecordingButton, dataRecordingLabel),
            Column(extensionsDropdown)), refEst1, refEst2,
        row(Column(valvula1Label, Kp1, Ki1, Kd1, Kw1),
            Column(valvula2Label, Kp2, Ki2, Kd2, Kw2)),
        row(alarm, alarm_list)), layout),
               title='Modo Automático')
panel2 = Panel(child=row(
    Column(
        label2,
        row(Column(dataRecordingButton, dataRecordingLabel),
            Column(extensionsDropdown)),
        row(Column(valvula1Label, voltageV1, razonFlujoV1),
            Column(valvula2Label, voltageV2, razonFlujoV2)),
        row(alarm, alarm_list)), layout),
               title='Modo Manual')

# Tabs
Exemple #21
0
widgets = Column(children=[
    Row(children=[
        Column(children=[
            click_button,
            disabled_button,
            toggle,
            dropdown,
            dropdown_split,
            checkbox_group,
            radio_group,
            checkbox_button_group,
            radio_button_group,
            Row(children=[
                checkbox_button_group_vertical, radio_button_group_vertical
            ]),
        ]),
        Column(children=[
            text_input,
            autocomplete_input,
            text_area,
            select,
            multi_select,
            multi_choice,
            slider,
            range_slider,
            date_slider,
            date_range_slider,
            spinner,
            color_picker,
            date_picker,
            Row(children=[switch_0, switch_1]),
            paragraph,
            div,
            pre_text,
        ]),
        tabs,
    ]),
    table,
])
Exemple #22
0
        div.background = `rgb(${r}, ${g}, ${b})`
    """)

    red.js_on_change('value', cb)
    green.js_on_change('value', cb)
    blue.js_on_change('value', cb)

    return Row(children=[red, green, blue, div])


sliders = Row(children=[
    Column(children=[
        slider,
        disabled_slider,
        range_slider,
        date_slider,
        date_range_slider,
        only_value_slider,
        no_title_slider,
    ]),
    color_picker(),
])

doc = Document()
doc.add_root(sliders)

if __name__ == "__main__":
    doc.validate()
    filename = "sliders.html"
    with open(filename, "w") as f:
        f.write(file_html(doc, INLINE, "sliders"))
Exemple #23
0
    def initialize_plot(self, plots=None, ranges=None):
        ranges = self.compute_ranges(self.layout, self.keys[-1], None)

        plot_grid = self._compute_grid()
        passed_plots = [] if plots is None else plots
        r_offset = 0
        col_offsets = defaultdict(int)
        tab_plots = []

        for r in range(self.rows):
            # Compute row offset
            row = [(k, sp) for k, sp in self.subplots.items() if k[0] == r]
            row_padded = any(len(sp.layout) > 2 for k, sp in row)
            if row_padded:
                r_offset += 1

            for c in range(self.cols):
                subplot = self.subplots.get((r, c), None)

                # Compute column offset
                col = [(k, sp) for k, sp in self.subplots.items() if k[1] == c]
                col_padded = any(len(sp.layout) > 1 for k, sp in col)
                if col_padded:
                    col_offsets[r] += 1
                c_offset = col_offsets.get(r, 0)

                if subplot is None:
                    continue

                shared_plots = list(passed_plots) if self.shared_axes else None
                subplots = subplot.initialize_plot(ranges=ranges, plots=shared_plots)
                nsubplots = len(subplots)

                # If tabs enabled lay out AdjointLayout on grid
                if self.tabs:
                    title = subplot.subplots['main']._format_title(self.keys[-1],
                                                                   dimensions=False)
                    if not title:
                        title = ' '.join(self.paths[r,c])
                    if nsubplots == 1:
                        grid = subplots[0]
                    elif nsubplots == 2:
                        grid = gridplot([subplots], merge_tools=self.merge_tools,
                                        toolbar_location=self.toolbar)
                    else:
                        grid = [[subplots[2], None], subplots[:2]]
                        grid = gridplot(children=grid, merge_tools=self.merge_tools,
                                        toolbar_location=self.toolbar)
                    tab_plots.append((title, grid))
                    continue

                # Situate plot in overall grid
                if nsubplots > 2:
                    plot_grid[r+r_offset-1][c+c_offset-1] = subplots[2]
                plot_column = plot_grid[r+r_offset]
                if nsubplots > 1:
                    plot_column[c+c_offset-1] = subplots[0]
                    plot_column[c+c_offset] = subplots[1]
                else:
                    plot_column[c+c_offset-int(col_padded)] = subplots[0]
                passed_plots.append(subplots[0])

        # Wrap in appropriate layout model
        kwargs = dict(sizing_mode=self.sizing_mode)
        if self.tabs:
            plots = filter_toolboxes([p for t, p in tab_plots])
            panels = [Panel(child=child, title=t) for t, child in tab_plots]
            layout_plot = Tabs(tabs=panels)
        else:
            plot_grid = layout_padding(plot_grid, self.renderer)
            plot_grid = filter_toolboxes(plot_grid)
            plot_grid, width = pad_plots(plot_grid)
            layout_plot = gridplot(children=plot_grid, width=width,
                                   toolbar_location=self.toolbar,
                                   merge_tools=self.merge_tools, **kwargs)

        title = self._get_title(self.keys[-1])
        if title:
            self.handles['title'] = title
            layout_plot = Column(title, layout_plot, **kwargs)

        self.handles['plot'] = layout_plot
        self.handles['plots'] = plots

        self._update_callbacks(layout_plot)
        if self.shared_datasource:
            self.sync_sources()

        if self.top_level:
            self.init_links()

        self.drawn = True

        return self.handles['plot']
def Mapa(dfBokeh, DatosBokeh):
    """
        PREPARACION DE DATOS
    """
    # Calculo de los valores agregados
    AVG_Altitud, MAX_Altitud, MIN_Altitud, \
    AVG_Velocidad, MAX_Velocidad, MIN_Velocidad, \
    AVG_Ritmo, MAX_Ritmo, MIN_Ritmo, \
    AVG_FrecuenciaCardiaca, MAX_FrecuenciaCardiaca, MIN_FrecuenciaCardiaca, \
    AVG_Cadencia, MAX_Cadencia, MIN_Cadencia, \
    AVG_Temperatura, MAX_Temperatura, MIN_Temperatura, \
    AVG_LongitudZancada, MAX_LongitudZancada, MIN_LongitudZancada, \
    AVG_Pendiente, MAX_Pendiente , MIN_Pendiente = CalculosVectoresAgregados(dfBokeh)

    AltitudInicio, AltitudFin = dfBokeh.loc[dfBokeh.index.min() == dfBokeh.index, ['Altitud']].min()[0], dfBokeh.loc[dfBokeh.index.max() == dfBokeh.index, ['Altitud']].min()[0]
    # Calculo de desniveles finales
    DesnivelPositivo = dfBokeh['DesnivelPositivoAcumulado'].max()
    DesnivelNegativo = dfBokeh['DesnivelNegativoAcumulado'].max()
    DesnivelAcumulado = DesnivelPositivo + DesnivelNegativo
    DesnivelPorKilometro = (DesnivelAcumulado/dfBokeh['Distancia'].max())*1000
    
    """
        MAPA
        
        CARTODBPOSITRON
        CARTODBPOSITRON_RETINA
        STAMEN_TERRAIN
        STAMEN_TERRAIN_RETINA
        STAMEN_TONER
        STAMEN_TONER_BACKGROUND
        STAMEN_TONER_LABELS
    """
    # Creacion de un grafica
    PLT_Mapa = figure(width=900, height=430, x_range=(DatosBokeh.data['LongitudMercator'].min()-100, DatosBokeh.data['LongitudMercator'].max()+100), y_range=(DatosBokeh.data['LatitudMercator'].min()-100, DatosBokeh.data['LatitudMercator'].max()+100), x_axis_type= 'mercator', y_axis_type= 'mercator', tools= 'wheel_zoom, reset, hover')
    PLT_Mapa.add_tile(get_provider('STAMEN_TERRAIN'))
    
    # Inclusion de datos
    PLT_MP_Linea = PLT_Mapa.line(x= 'LongitudMercator', y= 'LatitudMercator', source= DatosBokeh, line_color= Grapefruit[2], line_width= 3, line_cap= 'round')
    """
    #PLT_Mapa.circle(x= 'LongitudMercator', y= 'LatitudMercator', source= DatosBokeh, size= 5, line_color= None, fill_color= None, fill_alpha= 0, hover_fill_color= 'yellow', hover_line_color = 'black', hover_alpha= 1)
    #PLT_Mapa.add_tools(HoverTool(tooltips=None, mode='mouse'))
    """
    
    CoordenadasHitosKm, TiempoTotalKm, TiempoActividadKm, MinDistanciaKm = HitosKilometricos(dfBokeh)
    CoordenadasPausas, TiempoTotalPausas, TiempoActividadPausas, DistanciasPausas = HitosPausas(dfBokeh)
    
    # Ubicacion de puntos de inicio, fin y kilometros
    LongitudKm =[]
    LatitudKm =[]
    PuntoKilometrico = []
    for i, Km in enumerate(CoordenadasHitosKm):
        if i == 0:
            PLT_Mapa_Inicio = PLT_Mapa.circle(ConversorCoordenadasMercator(Km[1], Km[0])[0], ConversorCoordenadasMercator(Km[1], Km[0])[1], size= 8, line_color= 'black', fill_color= Spectral[2], visible= True)
        elif i == len(CoordenadasHitosKm)-1:
            PLT_Mapa_Fin = PLT_Mapa.circle(ConversorCoordenadasMercator(Km[1], Km[0])[0], ConversorCoordenadasMercator(Km[1], Km[0])[1], size= 8, line_color= 'black', fill_color= Spectral[7], visible= True)
        else:
            LongitudKm.append(ConversorCoordenadasMercator(Km[1], Km[0])[0])
            LatitudKm.append(ConversorCoordenadasMercator(Km[1], Km[0])[1])
            PuntoKilometrico.append(str(i))
    CDS_PuntosKm = ColumnDataSource(data= dict(Longitud= LongitudKm, Latitud= LatitudKm, PuntoKilometrico= PuntoKilometrico))
    PLT_Mapa_PuntoKm = PLT_Mapa.circle(x= 'Longitud', y= 'Latitud', source= CDS_PuntosKm, color= 'white', size= 8, line_color= 'black', fill_color= 'white', visible= True)
    PLT_Mapa_PuntoKm_TXT = LabelSet(x= 'Longitud', y= 'Latitud', text='PuntoKilometrico', level='glyph', x_offset= 5, y_offset= 0, source= CDS_PuntosKm, render_mode='canvas', text_font_size= '10pt', text_color= 'black', text_align= 'left', text_baseline= 'middle', text_font_style= 'bold', visible= True)
    PLT_Mapa.add_layout(PLT_Mapa_PuntoKm_TXT)
        
    # Ubicacion de pausas
    LongitudPausa =[]
    LatitudPausa =[]
    for i, Km in enumerate(CoordenadasPausas):
        LongitudPausa.append(ConversorCoordenadasMercator(Km[1], Km[0])[0])
        LatitudPausa.append(ConversorCoordenadasMercator(Km[1], Km[0])[1])
    PLT_Mapa_Pausas = PLT_Mapa.x(LongitudPausa, LatitudPausa, line_color= 'black', line_width= 2, fill_color= None, visible= False)
    
    
    # Identificacion de pico y valle en trails
    for index, row in dfBokeh.iterrows():
        LongitudMercator, LatitudMercator = ConversorCoordenadasMercator(row.Longitud, row.Latitud)
        dfBokeh.at[index,'LongitudMercator'] = LongitudMercator
        dfBokeh.at[index,'LatitudMercator'] = LatitudMercator
        
    if (DesnivelPorKilometro > 40) and (MAX_Altitud[0] >= (AltitudInicio + 50) and MAX_Altitud[0] >= (AltitudFin + 50)):
        PLT_Mapa_Cima = PLT_Mapa.triangle(dfBokeh[dfBokeh['Altitud']==MAX_Altitud[0]]['LongitudMercator'].min(), dfBokeh[dfBokeh['Altitud']==MAX_Altitud[0]]['LatitudMercator'].min(), size= 10, line_color= 'black', line_width= 2, fill_color= Spectral[4], visible= False)
        PLT_Mapa_Cima_TXT = Label(x= dfBokeh[dfBokeh['Altitud']==MAX_Altitud[0]]['LongitudMercator'].min(), y= dfBokeh[dfBokeh['Altitud']==MAX_Altitud[0]]['LatitudMercator'].min(), text= str(round(MAX_Altitud[0])), x_offset= 5, y_offset= 0, text_font_size= '10pt', text_color= 'black', text_align= 'left', text_baseline= 'middle', text_font_style= 'bold', visible= False)
        PLT_Mapa.add_layout(PLT_Mapa_Cima_TXT)
    else:
        PLT_Mapa_Cima = PLT_Mapa.triangle(0, 0, size= 0, line_alpha= 0, visible= False)
        PLT_Mapa_Cima_TXT = Label(x= 0, y= 0, text= '', text_font_size= '0pt', text_alpha= 0, visible= False)
        
    if (DesnivelPorKilometro > 40) and (MIN_Altitud[0] <= (AltitudInicio - 50) and MIN_Altitud[0] <= (AltitudFin - 50)):    
        PLT_Mapa_Valle = PLT_Mapa.inverted_triangle(dfBokeh[dfBokeh['Altitud']==MIN_Altitud[0]]['LongitudMercator'].min(), dfBokeh[dfBokeh['Altitud']==MIN_Altitud[0]]['LatitudMercator'].min(), size= 10, line_color= 'black', line_width= 2, fill_color= Spectral[0], visible= False)
        PLT_Mapa_Valle_TXT = Label(x= dfBokeh[dfBokeh['Altitud']==MIN_Altitud[0]]['LongitudMercator'].min(), y= dfBokeh[dfBokeh['Altitud']==MIN_Altitud[0]]['LatitudMercator'].min(), text= str(round(MIN_Altitud[0])), x_offset= 5, y_offset= 0, text_font_size= '10pt', text_color= 'black', text_align= 'left', text_baseline= 'middle', text_font_style= 'bold', visible= False)
        PLT_Mapa.add_layout(PLT_Mapa_Valle_TXT)
    else:
        PLT_Mapa_Valle = PLT_Mapa.inverted_triangle(0, 0, size= 0, line_alpha= 0, visible= False)
        PLT_Mapa_Valle_TXT = Label(x= 0, y= 0, text= '', text_font_size= '0pt', text_alpha= 0, visible= False)
    
    # Atributos
    PLT_Mapa.sizing_mode = 'fixed'
    PLT_Mapa.xaxis.major_tick_line_color = None
    PLT_Mapa.xaxis.minor_tick_line_color = None
    PLT_Mapa.yaxis.major_tick_line_color = None
    PLT_Mapa.yaxis.minor_tick_line_color = None
    PLT_Mapa.xaxis.major_label_text_font_size = '0pt'
    PLT_Mapa.yaxis.major_label_text_font_size = '0pt'
    PLT_Mapa.grid.visible = False
    PLT_Mapa.toolbar.autohide = True
    # Sin bordes
    PLT_Mapa.min_border_left = 0
    PLT_Mapa.min_border_right = 0
    PLT_Mapa.min_border_top = 0
    PLT_Mapa.min_border_bottom = 0
    # Linea exterior
    PLT_Mapa.outline_line_width = 3
    PLT_Mapa.outline_line_alpha = 0.3
    PLT_Mapa.outline_line_color = 'black'
    
    """
        BOTONES
    """
    
    CodigoJS = """
    var indexOf = [].indexOf || function(item) { for (var i = 0, l = this.length; i < l; i++) { if (i in this && this[i] === item) return i; } return -1; };
    
    l0.visible = indexOf.call(checkbox.active,0)>=0;
    l1.visible = indexOf.call(checkbox.active,0)>=0;
    
    l2.visible = indexOf.call(checkbox.active,1)>=0;
    l3.visible = indexOf.call(checkbox.active,1)>=0;
    
    l4.visible = indexOf.call(checkbox.active,2)>=0;
    l5.visible = indexOf.call(checkbox.active,2)>=0;
    
    l6.visible = indexOf.call(checkbox.active,2)>=0;
    l7.visible = indexOf.call(checkbox.active,2)>=0;
    
    l8.visible = indexOf.call(checkbox.active,3)>=0;
    """
    
    BotonesMapa = CheckboxButtonGroup(labels=["INICIO/FIN", "PUNTOS KILOMETRICOS", "CIMA/VALLE", 'PAUSAS'], active=[0, 1], width=300, height=30)
    CodigoJSMapa = CustomJS(code=CodigoJS, args=dict(l0=PLT_Mapa_Inicio, l1=PLT_Mapa_Fin, l2=PLT_Mapa_PuntoKm, l3= PLT_Mapa_PuntoKm_TXT, l4=PLT_Mapa_Cima, l5=PLT_Mapa_Cima_TXT, l6=PLT_Mapa_Valle, l7=PLT_Mapa_Valle_TXT, l8=PLT_Mapa_Pausas, checkbox= BotonesMapa))
    BotonesMapa.js_on_click(CodigoJSMapa)
    
    GridMapa = layout([PLT_Mapa, Column(BotonesMapa, width=300, height=35)], sizing_mode='stretch_width', width=900, height=470)

        
    return GridMapa
Exemple #25
0
    plot.add_layout(Grid(dimension=0, ticker=xaxis.ticker))
    plot.add_layout(Grid(dimension=1, ticker=yaxis.ticker))

    plot.add_tools(HoverTool())

    tab = Panel(child=plot, title=title, closable=True)

    return tab


def make_tabs(objs):
    return Tabs(tabs=[make_tab(title, obj) for title, obj in objs], width=600)


layout = Column(children=[
    Paragraph(text="Only Image and ImageRGBA glyphs are not demonstrated."),
    make_tabs(glyphs),
    make_tabs(markers)
])

doc = Document()
doc.add_root(layout)

if __name__ == "__main__":
    doc.validate()
    filename = "glyphs.html"
    with open(filename, "w") as f:
        f.write(file_html(doc, INLINE, "Glyphs"))
    print("Wrote %s" % filename)
    view(filename)
Exemple #26
0
plot_1.title.text = "Circular Layout (NodesAndLinkedEdges inspection policy)"
plot_1.add_tools(HoverTool(tooltips=None))

plot_2 = create_graph(nx.spring_layout,
                      selection_policy=NodesAndLinkedEdges(),
                      scale=2,
                      center=(0, 0))
plot_2.title.text = "Spring Layout (NodesAndLinkedEdges selection policy)"
plot_2.add_tools(TapTool(), BoxSelectTool())

plot_3 = create_graph(nx.random_layout,
                      inspection_policy=EdgesAndLinkedNodes(),
                      center=(0, 0))
plot_3.title.text = "Random Layout (EdgesAndLinkedNodes inspection policy)"
plot_3.add_tools(HoverTool(tooltips=None))

plot_4 = create_graph(nx.fruchterman_reingold_layout,
                      selection_policy=EdgesAndLinkedNodes(),
                      scale=2,
                      center=(0, 0),
                      dim=2)
plot_4.title.text = "FR Layout (EdgesAndLinkedNodes selection policy)"
plot_4.add_tools(TapTool())

layout = Column(Row(plot_1, plot_2), Row(plot_3, plot_4))

doc = curdoc()
doc.add_root(layout)

show(layout)
def plot_dispersion_bokeh(filename, period_array, curve_data_array,
                          boundary_data, style_parameter):
    '''
    Plot dispersion maps and curves using bokeh
    
    Input:
        filename is the filename of the resulting html file
        period_array is a list of period
        curve_data_array is a list of dispersion curves
        boundary_data is a list of boundaries
        style_parameter contains plotting parameters 
    
    Output:
        None
        
    '''
    xlabel_fontsize = style_parameter['xlabel_fontsize']
    # ==============================
    # prepare data
    map_data_all_slices_velocity = []
    map_data_all_slices_period = []
    map_data_all_slices_color = []
    colorbar_data_all_left = []
    colorbar_data_all_right = []
    nperiod = len(period_array)
    ncurve = len(curve_data_array)
    ncolor = len(palette)
    palette_r = palette[::-1]
    colorbar_top = [0.1 for i in range(ncolor)]
    colorbar_bottom = [0 for i in range(ncolor)]
    for iperiod in range(nperiod):
        one_slice_lat_list = []
        one_slice_lon_list = []
        one_slice_vel_list = []

        map_period = period_array[iperiod]
        for icurve in range(ncurve):
            acurve = curve_data_array[icurve]
            curve_lat = acurve['latitude']
            curve_lon = acurve['longitude']
            curve_vel = acurve['velocity']
            curve_period = acurve['period']
            one_slice_lat_list.append(curve_lat)
            one_slice_lon_list.append(curve_lon)
            if map_period in curve_period:
                curve_period_index = curve_period.index(map_period)
                one_slice_vel_list.append(curve_vel[curve_period_index])
            else:
                one_slice_vel_list.append(style_parameter['nan_value'])
        # get color for dispersion values
        one_slice_vel_mean = np.nanmean(one_slice_vel_list)
        one_slice_vel_std = np.nanstd(one_slice_vel_list)

        color_min = one_slice_vel_mean - one_slice_vel_std * style_parameter[
            'spread_factor']
        color_max = one_slice_vel_mean + one_slice_vel_std * style_parameter[
            'spread_factor']
        color_step = (color_max - color_min) * 1. / ncolor
        one_slice_color_list = get_color_list(one_slice_vel_list,color_min,color_max,palette_r,\
                                             style_parameter['nan_value'],style_parameter['nan_color'])
        colorbar_left = np.linspace(color_min, color_max - color_step, ncolor)
        colorbar_right = np.linspace(color_min + color_step, color_max, ncolor)
        if one_slice_lat_list:
            map_data_all_slices_velocity.append(one_slice_vel_list)
            map_data_all_slices_period.append(
                'Period: {0:6.1f} s'.format(map_period))
            map_data_all_slices_color.append(one_slice_color_list)
            colorbar_data_all_left.append(colorbar_left)
            colorbar_data_all_right.append(colorbar_right)
    # get location for all points
    map_lat_list, map_lon_list = [], []
    map_lat_label_list, map_lon_label_list = [], []
    for i in range(ncurve):
        acurve = curve_data_array[i]
        map_lat_list.append(acurve['latitude'])
        map_lon_list.append(acurve['longitude'])
        map_lat_label_list.append('Lat: {0:12.3f}'.format(acurve['latitude']))
        map_lon_label_list.append('Lon: {0:12.3f}'.format(acurve['longitude']))
    # data for the map view plot
    map_view_label_lon = style_parameter['map_view_period_label_lon']
    map_view_label_lat = style_parameter['map_view_period_label_lat']

    map_data_one_slice = map_data_all_slices_color[
        style_parameter['map_view_default_index']]
    map_data_one_slice_period = map_data_all_slices_period[
        style_parameter['map_view_default_index']]
    map_data_one_slice_bokeh = ColumnDataSource(data=dict(map_lat_list=map_lat_list,\
                                                          map_lon_list=map_lon_list,\
                                                          map_data_one_slice=map_data_one_slice))
    map_data_one_slice_period_bokeh = ColumnDataSource(
        data=dict(lat=[map_view_label_lat],
                  lon=[map_view_label_lon],
                  map_period=[map_data_one_slice_period]))
    map_data_all_slices_bokeh = ColumnDataSource(data=dict(map_data_all_slices_color=map_data_all_slices_color,\
                                                          map_data_all_slices_period=map_data_all_slices_period))

    # data for the colorbar
    colorbar_data_one_slice = {}
    colorbar_data_one_slice['colorbar_left'] = colorbar_data_all_left[
        style_parameter['map_view_default_index']]
    colorbar_data_one_slice['colorbar_right'] = colorbar_data_all_right[
        style_parameter['map_view_default_index']]
    colorbar_data_one_slice_bokeh = ColumnDataSource(data=dict(colorbar_top=colorbar_top,colorbar_bottom=colorbar_bottom,
                                                               colorbar_left=colorbar_data_one_slice['colorbar_left'],\
                                                               colorbar_right=colorbar_data_one_slice['colorbar_right'],\
                                                               palette_r=palette_r))
    colorbar_data_all_slices_bokeh = ColumnDataSource(data=dict(colorbar_data_all_left=colorbar_data_all_left,\
                                                                colorbar_data_all_right=colorbar_data_all_right))
    # data for dispersion curves
    curve_default_index = style_parameter['curve_default_index']
    selected_dot_on_map_bokeh = ColumnDataSource(data=dict(lat=[map_lat_list[curve_default_index]],\
                                                     lon=[map_lon_list[curve_default_index]],\
                                                     color=[map_data_one_slice[curve_default_index]],\
                                                     index=[curve_default_index]))
    selected_curve_data = curve_data_array[curve_default_index]
    selected_curve_data_bokeh = ColumnDataSource(data=dict(curve_period=selected_curve_data['period'],\
                                                          curve_velocity=selected_curve_data['velocity']))

    period_all = []
    velocity_all = []
    for acurve in curve_data_array:
        period_all.append(acurve['period'])
        velocity_all.append(acurve['velocity'])
    curve_data_all_bokeh = ColumnDataSource(
        data=dict(period_all=period_all, velocity_all=velocity_all))

    selected_curve_lat_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lat_label_x']], \
                                                                y=[style_parameter['curve_lat_label_y']],\
                                                                lat_label=[map_lat_label_list[curve_default_index]]))
    selected_curve_lon_label_bokeh = ColumnDataSource(data=dict(x=[style_parameter['curve_lon_label_x']], \
                                                                y=[style_parameter['curve_lon_label_y']],\
                                                                lon_label=[map_lon_label_list[curve_default_index]]))
    all_curve_lat_label_bokeh = ColumnDataSource(data=dict(
        map_lat_label_list=map_lat_label_list))
    all_curve_lon_label_bokeh = ColumnDataSource(data=dict(
        map_lon_label_list=map_lon_label_list))
    # ==============================
    map_view = Figure(plot_width=style_parameter['map_view_plot_width'], \
                      plot_height=style_parameter['map_view_plot_height'], \
                      y_range=[style_parameter['map_view_lat_min'],\
                    style_parameter['map_view_lat_max']], x_range=[style_parameter['map_view_lon_min'],\
                    style_parameter['map_view_lon_max']], tools=style_parameter['map_view_tools'],\
                    title=style_parameter['map_view_title'])
    # ------------------------------
    # add boundaries to map view
    # country boundaries
    map_view.multi_line(boundary_data['country']['longitude'],\
                        boundary_data['country']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # marine boundaries
    map_view.multi_line(boundary_data['marine']['longitude'],\
                        boundary_data['marine']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # shoreline boundaries
    map_view.multi_line(boundary_data['shoreline']['longitude'],\
                        boundary_data['shoreline']['latitude'],color='black',\
                        line_width=2, level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # state boundaries
    map_view.multi_line(boundary_data['state']['longitude'],\
                        boundary_data['state']['latitude'],color='black',\
                        level='underlay',nonselection_line_alpha=1.0,\
                        nonselection_line_color='black')
    # ------------------------------
    # add period label
    map_view.rect(style_parameter['map_view_period_box_lon'], style_parameter['map_view_period_box_lat'], \
                  width=style_parameter['map_view_period_box_width'], height=style_parameter['map_view_period_box_height'], \
                  width_units='screen',height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    map_view.text('lon', 'lat', 'map_period', source=map_data_one_slice_period_bokeh,\
                  text_font_size=style_parameter['annotating_text_font_size'],text_align='left',level='underlay')
    # ------------------------------
    # plot dots
    map_view.circle('map_lon_list', 'map_lat_list', color='map_data_one_slice', \
                    source=map_data_one_slice_bokeh, size=style_parameter['marker_size'],\
                    line_width=0.2, line_color='black', alpha=1.0,\
                    selection_color='map_data_one_slice', selection_line_color='black',\
                    selection_fill_alpha=1.0,\
                    nonselection_fill_alpha=1.0, nonselection_fill_color='map_data_one_slice',\
                    nonselection_line_color='black', nonselection_line_alpha=1.0)
    map_view.circle('lon', 'lat', color='color', source=selected_dot_on_map_bokeh, \
                    line_color='#00ff00', line_width=4.0, alpha=1.0, \
                    size=style_parameter['selected_marker_size'])
    # ------------------------------
    # change style
    map_view.title.text_font_size = style_parameter['title_font_size']
    map_view.title.align = 'center'
    map_view.title.text_font_style = 'normal'
    map_view.xaxis.axis_label = style_parameter['map_view_xlabel']
    map_view.xaxis.axis_label_text_font_style = 'normal'
    map_view.xaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.xaxis.major_label_text_font_size = xlabel_fontsize
    map_view.yaxis.axis_label = style_parameter['map_view_ylabel']
    map_view.yaxis.axis_label_text_font_style = 'normal'
    map_view.yaxis.axis_label_text_font_size = xlabel_fontsize
    map_view.yaxis.major_label_text_font_size = xlabel_fontsize
    map_view.xgrid.grid_line_color = None
    map_view.ygrid.grid_line_color = None
    map_view.toolbar.logo = None
    map_view.toolbar_location = 'above'
    map_view.toolbar_sticky = False
    # ==============================
    # plot colorbar
    colorbar_fig = Figure(tools=[], y_range=(0,0.1),plot_width=style_parameter['map_view_plot_width'], \
                          plot_height=style_parameter['colorbar_plot_height'],title=style_parameter['colorbar_title'])
    colorbar_fig.toolbar_location = None
    colorbar_fig.quad(top='colorbar_top',bottom='colorbar_bottom',left='colorbar_left',right='colorbar_right',\
                      fill_color='palette_r',source=colorbar_data_one_slice_bokeh)
    colorbar_fig.yaxis[0].ticker = FixedTicker(ticks=[])
    colorbar_fig.xgrid.grid_line_color = None
    colorbar_fig.ygrid.grid_line_color = None
    colorbar_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    colorbar_fig.xaxis[0].formatter = PrintfTickFormatter(format="%5.2f")
    colorbar_fig.title.text_font_size = xlabel_fontsize
    colorbar_fig.title.align = 'center'
    colorbar_fig.title.text_font_style = 'normal'
    # ==============================
    curve_fig = Figure(plot_width=style_parameter['curve_plot_width'], plot_height=style_parameter['curve_plot_height'], \
                       y_range=(style_parameter['curve_y_min'],style_parameter['curve_y_max']), \
                       x_range=(style_parameter['curve_x_min'],style_parameter['curve_x_max']),x_axis_type='log',\
                        tools=['save','box_zoom','wheel_zoom','reset','crosshair','pan'],
                        title=style_parameter['curve_title'])
    # ------------------------------
    curve_fig.rect([style_parameter['curve_label_box_x']], [style_parameter['curve_label_box_y']], \
                   width=style_parameter['curve_label_box_width'], height=style_parameter['curve_label_box_height'], \
                   width_units='screen', height_units='screen', color='#FFFFFF', line_width=1., line_color='black', level='underlay')
    curve_fig.text('x', 'y', \
                   'lat_label', source=selected_curve_lat_label_bokeh)
    curve_fig.text('x', 'y', \
                   'lon_label', source=selected_curve_lon_label_bokeh)
    # ------------------------------
    curve_fig.line('curve_period',
                   'curve_velocity',
                   source=selected_curve_data_bokeh,
                   color='black')
    curve_fig.circle('curve_period',
                     'curve_velocity',
                     source=selected_curve_data_bokeh,
                     size=5,
                     color='black')
    # ------------------------------
    curve_fig.title.text_font_size = style_parameter['title_font_size']
    curve_fig.title.align = 'center'
    curve_fig.title.text_font_style = 'normal'
    curve_fig.xaxis.axis_label = style_parameter['curve_xlabel']
    curve_fig.xaxis.axis_label_text_font_style = 'normal'
    curve_fig.xaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig.xaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig.yaxis.axis_label = style_parameter['curve_ylabel']
    curve_fig.yaxis.axis_label_text_font_style = 'normal'
    curve_fig.yaxis.axis_label_text_font_size = xlabel_fontsize
    curve_fig.yaxis.major_label_text_font_size = xlabel_fontsize
    curve_fig.xgrid.grid_line_dash = [4, 2]
    curve_fig.ygrid.grid_line_dash = [4, 2]
    curve_fig.xaxis[0].formatter = PrintfTickFormatter(format="%4.0f")
    curve_fig.toolbar.logo = None
    curve_fig.toolbar_location = 'above'
    curve_fig.toolbar_sticky = False
    # ==============================
    map_data_one_slice_js = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                                          map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                                          selected_curve_data_bokeh=selected_curve_data_bokeh,\
                                                          curve_data_all_bokeh=curve_data_all_bokeh,\
                                                          selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\
                                                          selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\
                                                          all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\
                                                          all_curve_lon_label_bokeh=all_curve_lon_label_bokeh), code="""
    
    var inds = cb_obj.indices
    
    selected_dot_on_map_bokeh.data['index'] = [inds]
    
    var new_slice = map_data_one_slice_bokeh.data
    
    selected_dot_on_map_bokeh.data['lat'] = [new_slice['map_lat_list'][inds]]
    selected_dot_on_map_bokeh.data['lon'] = [new_slice['map_lon_list'][inds]]
    selected_dot_on_map_bokeh.data['color'] = [new_slice['map_data_one_slice'][inds]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][inds]
    selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][inds]
    
    selected_curve_data_bokeh.change.emit()
    
    var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list']
    var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list']
    
    selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[inds]]
    selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[inds]]
    
    selected_curve_lat_label_bokeh.change.emit()
    selected_curve_lon_label_bokeh.change.emit()
    """)
    map_data_one_slice_bokeh.selected.js_on_change('indices',
                                                   map_data_one_slice_js)
    # ==============================
    period_slider_callback = CustomJS(args=dict(map_data_all_slices_bokeh=map_data_all_slices_bokeh,\
                                  map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                  colorbar_data_all_slices_bokeh=colorbar_data_all_slices_bokeh, \
                                  colorbar_data_one_slice_bokeh=colorbar_data_one_slice_bokeh,\
                                  selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                  map_data_one_slice_period_bokeh=map_data_one_slice_period_bokeh),\
                       code="""
    var p_index = Math.round(cb_obj.value)
    var map_data_all_slices = map_data_all_slices_bokeh.data
    
    
    var map_data_new_slice = map_data_all_slices['map_data_all_slices_color'][p_index]
    map_data_one_slice_bokeh.data['map_data_one_slice'] = map_data_new_slice
    map_data_one_slice_bokeh.change.emit()
    
    var color_data_all_slices = colorbar_data_all_slices_bokeh.data
    colorbar_data_one_slice_bokeh.data['colorbar_left'] = color_data_all_slices['colorbar_data_all_left'][p_index]
    colorbar_data_one_slice_bokeh.data['colorbar_right'] = color_data_all_slices['colorbar_data_all_right'][p_index]
    colorbar_data_one_slice_bokeh.change.emit()
    
    var selected_index = selected_dot_on_map_bokeh.data['index']
    selected_dot_on_map_bokeh.data['color'] = [map_data_new_slice[selected_index]]
    selected_dot_on_map_bokeh.change.emit()
    
    map_data_one_slice_period_bokeh.data['map_period'] = [map_data_all_slices['map_data_all_slices_period'][p_index]]
    map_data_one_slice_period_bokeh.change.emit()
    """)
    period_slider = Slider(start=0, end=nperiod-1, value=style_parameter['map_view_default_index'], \
                           step=1, title=style_parameter['period_slider_title'], \
                           width=style_parameter['period_slider_plot_width'],\
                           height=50)
    period_slider.js_on_change('value', period_slider_callback)
    period_slider_callback.args['period_index'] = period_slider
    # ==============================
    curve_slider_callback = CustomJS(args=dict(selected_dot_on_map_bokeh=selected_dot_on_map_bokeh,\
                                              map_data_one_slice_bokeh=map_data_one_slice_bokeh,\
                                              selected_curve_data_bokeh=selected_curve_data_bokeh,\
                                              curve_data_all_bokeh=curve_data_all_bokeh,\
                                              selected_curve_lat_label_bokeh=selected_curve_lat_label_bokeh,\
                                              selected_curve_lon_label_bokeh=selected_curve_lon_label_bokeh,\
                                              all_curve_lat_label_bokeh=all_curve_lat_label_bokeh,\
                                              all_curve_lon_label_bokeh=all_curve_lon_label_bokeh),\
                                    code="""
    var c_index = Math.round(cb_obj.value)
    
    var one_slice = map_data_one_slice_bokeh.data
    
    selected_dot_on_map_bokeh.data['index'] = [c_index]
    selected_dot_on_map_bokeh.data['lat'] = [one_slice['map_lat_list'][c_index]]
    selected_dot_on_map_bokeh.data['lon'] = [one_slice['map_lon_list'][c_index]]
    selected_dot_on_map_bokeh.data['color'] = [one_slice['map_data_one_slice'][c_index]]
    
    selected_dot_on_map_bokeh.change.emit()
    
    selected_curve_data_bokeh.data['curve_period'] = curve_data_all_bokeh.data['period_all'][c_index]
    selected_curve_data_bokeh.data['curve_velocity'] = curve_data_all_bokeh.data['velocity_all'][c_index]
    
    selected_curve_data_bokeh.change.emit()
    
    var all_lat_labels = all_curve_lat_label_bokeh.data['map_lat_label_list']
    var all_lon_labels = all_curve_lon_label_bokeh.data['map_lon_label_list']
    
    selected_curve_lat_label_bokeh.data['lat_label'] = [all_lat_labels[c_index]]
    selected_curve_lon_label_bokeh.data['lon_label'] = [all_lon_labels[c_index]]
    
    selected_curve_lat_label_bokeh.change.emit()
    selected_curve_lon_label_bokeh.change.emit()
    """)
    curve_slider = Slider(start=0, end=ncurve-1, value=style_parameter['curve_default_index'], \
                          step=1, title=style_parameter['curve_slider_title'], width=style_parameter['curve_plot_width'],\
                          height=50)
    curve_slider.js_on_change('value', curve_slider_callback)
    curve_slider_callback.args['curve_index'] = curve_slider
    # ==============================
    # annotating text
    annotating_fig01 = Div(text=style_parameter['annotating_html01'], \
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    annotating_fig02 = Div(text=style_parameter['annotating_html02'],\
        width=style_parameter['annotation_plot_width'], height=style_parameter['annotation_plot_height'])
    # ==============================
    output_file(filename,
                title=style_parameter['html_title'],
                mode=style_parameter['library_source'])
    left_fig = Column(period_slider, map_view, colorbar_fig, annotating_fig01,\
                    width=style_parameter['left_column_width'] )
    right_fig = Column(curve_slider, curve_fig, annotating_fig02, \
                    width=style_parameter['right_column_width'] )
    layout = Row(left_fig, right_fig)
    save(layout)
                y_axis=Select(title="Y Axis",
                              options=[
                                  "Tomato Meter", "Number of Review",
                                  "Dollars at box office"
                              ],
                              value="Number of Reviews",
                              sizing_mode=sizing_mode))


w1 = make_widgets(sizing_mode)
w2 = make_widgets(sizing_mode)
check = Icon(icon_name='check')

Column(w1['genre'],
       w1['director'],
       w1['x_axis'],
       w1['y_axis'],
       sizing_mode=sizing_mode)
Column(w2['genre'],
       w2['director'],
       w2['x_axis'],
       w2['y_axis'],
       sizing_mode=sizing_mode)

layout = Column(Row(intro, sizing_mode=sizing_mode),
                Row(WidgetBox(w1['reviews'],
                              w1['genre'],
                              w1['oscars'],
                              w1['director'],
                              w1['x_axis'],
                              w1['y_axis'],
                step.mode = 'before';
                break;
            case 'Step (center)':
                interp = step;
                step.mode = 'center';
                break;
            case 'Step (after)':
                interp = step;
                step.mode = 'after';
                break;
        }

        for (var i = 0; i < N; i++) {
            data['x'][i] = i * dx
            data['y'][i] = interp.compute(data['x'][i])
        }
    }

    source.change.emit()
""")

mode = Select(
    title='Interpolation Mode',
    value='None',
    options=['None', 'Linear', 'Step (before)', 'Step (center)', 'Step (after)'],
    width=300)

mode.js_on_change('value', callback)

show(Column(mode, p))
Exemple #30
0
# Add the tools
tooltips = [
    ("Manufacturer", "@manufacturer"),
    ("Model", "@model"),
    ("Displacement", "@displ"),
    ("Year", "@year"),
    ("Cylinders", "@cyl"),
    ("Transmission", "@trans"),
    ("Drive", "@drv"),
    ("Class", "@class"),
]
cty_hover_tool = HoverTool(renderers=[cty],
                           tooltips=tooltips + [("City MPG", "@cty")])
hwy_hover_tool = HoverTool(renderers=[hwy],
                           tooltips=tooltips + [("Highway MPG", "@hwy")])
select_tool = BoxSelectTool(renderers=[cty, hwy], dimensions='width')
plot.add_tools(cty_hover_tool, hwy_hover_tool, select_tool)

layout = Column(plot, data_table)

doc = Document()
doc.add_root(layout)

if __name__ == "__main__":
    doc.validate()
    filename = "data_tables.html"
    with open(filename, "w") as f:
        f.write(file_html(doc, INLINE, "Data Tables"))
    print("Wrote %s" % filename)
    view(filename)