def plot_circle_density(nodes, degrees, plot_width=800, plot_height=800): print("Plotting circle density graph") TOOLS="hover,pan,wheel_zoom,box_zoom,reset,click,previewsave" plt.figure(plot_width=plot_width, plot_height=plot_height, tools=TOOLS) theta = np.random.uniform(0, 2*np.pi, size=len(nodes)) max_d, min_d = np.max(degrees), np.min(degrees) scale = 1.0/np.log(degrees) - 1.0/np.log(max_d) xs = np.cos(theta)*scale ys = np.sin(theta)*scale source_dict = dict( xs = xs, ys = ys, degrees = degrees, nodes = nodes, alphas = np.log(degrees)/np.log(max(degrees)), ) source = ColumnDataSource(source_dict) plt.hold(True) plt.circle('xs', 'ys', source=source, radius=0.0025, fill_alpha='alphas', x_axis_type=None, y_axis_type=None, title="Density Distribution of Degrees") plt.text([max(xs), max(xs)], [.95*max(ys), .85*max(ys)], ["distance from center = 1 / log(deg)", "angle = random"], angle=0, text_baseline="bottom", text_align="right") hover = [t for t in plt.curplot().tools if isinstance(t, HoverTool)][0] hover.tooltips = OrderedDict([ ('node', '@nodes'), ('degree', '@degrees') ]) plt.hold(False) return plt.curplot()
def plot_3(data, ss): """t-SNE embedding of the parameters, colored by score """ scores = np.array([d['mean_test_score'] for d in data]) # maps each parameters to a vector of floats warped = np.array([ss.point_to_moe(d['parameters']) for d in data]) # Embed into 2 dimensions with t-SNE X = TSNE(n_components=2).fit_transform(warped) e_scores = np.exp(scores) mine, maxe = np.min(e_scores), np.max(e_scores) color = (e_scores - mine) / (maxe - mine) mapped_colors = map(rgb2hex, cm.get_cmap('RdBu_r')(color)) bk.figure(title='t-SNE (unsupervised)') bk.hold() df_params = nonconstant_parameters(data) df_params['score'] = scores bk.circle( X[:, 0], X[:, 1], color=mapped_colors, radius=1, source=ColumnDataSource(df_params), fill_alpha=0.6, line_color=None, tools=TOOLS) cp = bk.curplot() hover = cp.select(dict(type=HoverTool)) format_tt = [(s, '@%s' % s) for s in df_params.columns] hover.tooltips = OrderedDict([("index", "$index")] + format_tt) xax, yax = bk.axis() xax.axis_label = 't-SNE coord 1' yax.axis_label = 't-SNE coord 2'
def perf_std_discrete(ticks, avgs, stds, legend=None, std_width=0.3, plot_width=1000, plot_height=300, color=BLUE, alpha=1.0, **kwargs): plotting.rect(ticks, avgs, [std_width for _ in stds], 2 * np.array(stds), line_color=None, fill_color=color, fill_alpha=alpha * 0.5, plot_width=plot_width, plot_height=plot_height, **kwargs) plotting.hold(True) plotting.line(ticks, avgs, line_color=color, line_alpha=alpha, legend=legend) plotting.circle(ticks, avgs, line_color=None, fill_color=color, fill_alpha=alpha) plotting.grid().grid_line_color = 'white' plotting_axis() plotting.hold(False)
def get_plottag(script_path): """ Saves js in script_path and returns tag for embedding in html """ import numpy as np import pandas as pd import os y_data = np.random.randn(100) x_data = pd.date_range('31-Aug-2014', periods=len(y_data)) figure(x_axis_type='datetime', tools='pan,wheel_zoom,box_zoom,reset,previewsave,crosshair', name='test plot') hold() line(x_data, y_data, line_color="#D95B43", line_width=4, alpha=0.7, legend='random', background_fill= '#cccccc') circle(x_data, y_data, color='red', fill_color=None, size=6, legend='random') curplot().title = 'Test Plot' xaxis().axis_label='date' yaxis().axis_label='some random numbers' grid().grid_line_color='white' grid().grid_line_alpha = 0.5 plotid = curplot()._id script_path = os.path.join(script_path, plotid+'.js') js, tag = autoload_static(curplot(), CDN, script_path=script_path) with open(script_path, 'w') as f: f.write(js) return tag
def radialchart(nodes, edgelist): ids, times, relevances = nodes.T times *= 2 node_x, node_y = _radial_layout(nodes) nodepos = np.asarray((node_x, node_y)).T hold() circle(node_x, node_y, color="red", size=relevances * 4, alpha=relevances) coords = nodepos[edgelist].reshape((len(edgelist), 4)).T segment(coords[0], coords[1], coords[2], coords[3], line_alpha=0.35)
def radialchart(nodes, edgelist): ids, times, relevances = nodes.T times *= 2 node_x, node_y = _radial_layout(nodes) nodepos = np.asarray((node_x, node_y)).T hold() circle(node_x, node_y, color="red", size=relevances*4, alpha=relevances) coords = nodepos[edgelist].reshape((len(edgelist), 4)).T segment(coords[0], coords[1], coords[2], coords[3], line_alpha=0.35)
def build_punchcard(datamap_list, concept_list, radii_list, fields_in_concept_list, datamaps, concepts, plot_width=1200, plot_height=800): source = ColumnDataSource( data=dict( datamap=datamap_list, # x concept=concept_list, # y radii=radii_list, fields_in_concept=fields_in_concept_list, ) ) output_file('') hold() figure() plot_properties = { 'title': None, 'tools': "hover,resize,previewsave", 'y_range': [get_datamap_label(datamap) for datamap in datamaps], 'x_range': concepts, 'plot_width': plot_width, 'plot_height': plot_height, } rect('concept', 'datamap', # x, y 1, 1, # height, width source=source, color='white', # put in background **plot_properties) circle('concept', 'datamap', # x, y size='radii', source=source, color='black', **plot_properties) grid().grid_line_color = None x = xaxis() x.major_label_orientation = pi / 4 hover = [t for t in curplot().tools if isinstance(t, HoverTool)][0] hover.tooltips = OrderedDict([ ("Datamap", "@datamap"), ("Concept", "@concept"), ("Fields", "@fields_in_concept"), ]) return curplot().create_html_snippet( static_path=settings.STATIC_URL, embed_save_loc=settings.BOKEH_EMBED_JS_DIR, embed_base_url=reverse('bokeh'), )
def coverage( s_channels, threshold, s_vectors=(), title="no title", swap_xy=True, x_range=None, y_range=None, color=C_COLOR, c_alpha=1.0, alpha=0.5, **kwargs ): x_range, y_range = ranges(s_channels, x_range=x_range, y_range=y_range) try: xv, yv = zip(*(s[:2] for s in s_vectors)) except ValueError: xv, yv = [], [] if swap_xy: x_range, y_range = y_range, x_range xv, yv = yv, xv plotting.circle( xv, yv, radius=threshold, x_range=x_range, y_range=y_range, fill_color=hexa(color, 0.35), fill_alpha=c_alpha, line_color=None, title=title, **kwargs ) plotting.hold(True) union = shapely.ops.unary_union([shapely.geometry.Point(*sv_i).buffer(threshold) for sv_i in s_vectors]) boundary = union.boundary if isinstance(boundary, shapely.geometry.LineString): boundary = [boundary] for b in boundary: x, y = b.xy x, y = list(x), list(y) if swap_xy: x, y = y, x plotting.patch(x, y, fill_color=None, line_color=hexa(color, 0.75)) plotting.hold(True) plotting_axis() plotting.hold(False)
def perf_std_discrete(ticks, avgs, stds, legend=None, std_width=0.3, plot_width=1000, plot_height=300, color=BLUE, alpha=1.0, **kwargs): plotting.rect(ticks, avgs, [std_width for _ in stds], 2*np.array(stds), line_color=None, fill_color=color, fill_alpha=alpha*0.5, plot_width=plot_width, plot_height=plot_height, **kwargs) plotting.hold(True) plotting.line(ticks, avgs, line_color=color, line_alpha=alpha, legend=legend) plotting.circle(ticks, avgs, line_color=None, fill_color=color, fill_alpha=alpha) plotting.grid().grid_line_color = 'white' plotting_axis() plotting.hold(False)
def test_figure(self): p = plt.figure() self.assertEqual(plt.curplot(), p) q = plt.circle([1,2,3], [1,2,3]) self.assertEqual(plt.curplot(), q) self.assertNotEqual(p, q) r = plt.figure() self.assertEqual(plt.curplot(), r) self.assertNotEqual(p, r) self.assertNotEqual(q, r) plt.hold() s = plt.circle([1,2,3], [1,2,3]) self.assertEqual(plt.curplot(), s) self.assertEqual(r, s)
def coverage(s_channels, threshold, s_vectors=(), title='no title', swap_xy=True, x_range=None, y_range=None, color=C_COLOR, c_alpha=1.0, alpha=0.5, **kwargs): x_range, y_range = ranges(s_channels, x_range=x_range, y_range=y_range) try: xv, yv = zip(*(s[:2] for s in s_vectors)) except ValueError: xv, yv = [], [] if swap_xy: x_range, y_range = y_range, x_range xv, yv = yv, xv plotting.circle(xv, yv, radius=threshold, x_range=x_range, y_range=y_range, fill_color=hexa(color, 0.35), fill_alpha=c_alpha, line_color=None, title=title, **kwargs) plotting.hold(True) union = shapely.ops.unary_union([ shapely.geometry.Point(*sv_i).buffer(threshold) for sv_i in s_vectors ]) boundary = union.boundary if isinstance(boundary, shapely.geometry.LineString): boundary = [boundary] for b in boundary: x, y = b.xy x, y = list(x), list(y) if swap_xy: x, y = y, x plotting.patch(x, y, fill_color=None, line_color=hexa(color, 0.75)) plotting.hold(True) plotting_axis() plotting.hold(False)
def crawlchart(nodes, edgelist): """ edges is an Nx2 array of node ids """ ids, times, relevances = nodes.T times *= 2 node_y = _rectilinear_layout(nodes) hold() #circle(times, node_y, color="gray", size=1) # Draw the relevant points in a different color circle(times, node_y, color="red", size=relevances * 6, alpha=relevances) nodepos = np.asarray((times, node_y)).T coords = nodepos[edgelist].reshape((len(edgelist), 4)).T segment(coords[0], coords[1], coords[2], coords[3], line_alpha=0.35)
def bokeh_highlights(s_vectors, n=1, color="#DF4949", swap_xy=True, radius=2.5, alpha=0.5): """n is the number of effect per cell to pick""" xv, yv = zip(*s_vectors) if swap_xy: xv, yv = yv, xv plotting.circle( xv, yv, fill_color=None, line_color=color, line_alpha=alpha, line_width=0.5, radius=radius, radius_units="screen", )
def test_merge(self): d1 = document.Document() d2 = document.Document() p1 = circle([1], [2]) p2 = circle([1], [2]) d1.add(p1) d2.add(p2) json_objs = d1.dump() json_objs = protocol.deserialize_json(protocol.serialize_json(json_objs)) d2.merge(json_objs) assert d2.context._id == d1.context._id assert len(d2.context.children) == 2 assert d2.context is d2._models[d2.context._id] pcs = [x for x in d2._models.values() if x.__view_model__ == "PlotContext"] assert len(pcs) == 1
def test_figure(self): plt.figure() self.assertEqual(plt.curplot(), None) p = plt.circle([1,2,3], [1,2,3]) self.assertEqual(plt.curplot(), p) plt.figure() self.assertEqual(plt.curplot(), None)
def crawlchart(nodes, edgelist): """ edges is an Nx2 array of node ids """ ids, times, relevances = nodes.T times *= 2 node_y = _rectilinear_layout(nodes) hold() #circle(times, node_y, color="gray", size=1) # Draw the relevant points in a different color circle(times, node_y, color="red", size=relevances*6, alpha=relevances) nodepos = np.asarray((times,node_y)).T coords = nodepos[edgelist].reshape((len(edgelist), 4)).T segment(coords[0], coords[1], coords[2], coords[3], line_alpha=0.35)
def test_axis(self): plt.figure() p = plt.circle([1,2,3], [1,2,3]) self.assertEqual(len(plt.axis()), 2) expected = set(plt.axis()) ax = LinearAxis() expected.add(ax) p.above.append(ax) self.assertEqual(set(plt.axis()), expected) ax2 = LinearAxis() expected.add(ax2) p.below.append(ax2) self.assertEqual(set(plt.axis()), expected) ax3 = LinearAxis() expected.add(ax3) p.left.append(ax3) self.assertEqual(set(plt.axis()), expected) ax4 = LinearAxis() expected.add(ax4) p.right.append(ax4) self.assertEqual(set(plt.axis()), expected)
def make_plots(self, ticker1, ticker2): self.plot = circle(ticker1 + "_returns", ticker2 + "_returns", title="%s vs %s" %(ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select" )
def test_add(self): d = document.Document() p = circle([1], [2]) d.add(p) self.assertListEqual(d.context.children, [p]) self.assertEqual(len(d._models), len(p.references())+1) self.assertTrue(d.context._dirty)
def make_plots(self, ticker1, ticker2): self.plot = circle(ticker1 + "_returns", ticker2 + "_returns", title="%s vs %s" % (ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select")
def make_plots(self, ticker1, ticker2): self.plot = circle(ticker1 + "_returns", ticker2 + "_returns", title="%s vs %s" %(ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select" ) session().plotcontext.children=[self] session().plotcontext._dirty = True
def bokeh_highlights(s_vectors, n=1, color='#DF4949', swap_xy=True, radius=2.5, alpha=0.5): """n is the number of effect per cell to pick""" xv, yv = zip(*s_vectors) if swap_xy: xv, yv = yv, xv plotting.circle(xv, yv, fill_color=None, line_color=color, line_alpha=alpha, line_width=0.5, radius=radius, radius_units='screen')
def build_scatter_tooltip(x, y, tt, add_line=True, radius=3, title='My Plot', xlabel='Iteration number', ylabel='Score'): bk.figure(title=title) bk.hold() bk.circle( x, y, radius=radius, source=ColumnDataSource(tt), fill_alpha=0.6, line_color=None, tools=TOOLS) if add_line: bk.line(x, y, line_width=2) xax, yax = bk.axis() xax.axis_label = xlabel yax.axis_label = ylabel cp = bk.curplot() hover = cp.select(dict(type=HoverTool)) format_tt = [(s, '@%s' % s) for s in tt.columns] hover.tooltips = OrderedDict([("index", "$index")] + format_tt)
def make_plots(self, ticker1, ticker2): self.plot = circle(ticker1 + "_returns", ticker2 + "_returns", title="%s vs %s" % (ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select") session().plotcontext.children = [self] session().plotcontext._dirty = True
def make_plot(): sess = session() data = pd.DataFrame({'a' : np.random.randn(100), 'b' : np.random.randn(100)}) source = ColumnDataSource(data=data) scatter_plot = circle(source=source, x='a', y='b', plot_width=500, plot_height=500) app = App(data_source=source, scatter_plot=scatter_plot, stats=str(data.describe()) ) return app
def line_plot(self, ticker, x_range=None): plot = circle('date', ticker, title=ticker, size=2, x_range=x_range, x_axis_type='datetime', source=self.source, title_text_font_size="10pt", plot_width=1000, plot_height=200, nonselection_alpha=0.02, tools="pan,wheel_zoom,select") return plot
def make_plot(): sess = session() data = pd.DataFrame({'a': np.random.randn(100), 'b': np.random.randn(100)}) source = ColumnDataSource(data=data) scatter_plot = circle(source=source, x='a', y='b', plot_width=500, plot_height=500) app = App(data_source=source, scatter_plot=scatter_plot, stats=str(data.describe())) return app
def line_plot(self, ticker, x_range=None): plot = circle( 'date', ticker, title=ticker, size=2, x_range=x_range, x_axis_type='datetime', source=self.source, title_text_font_size="10pt", plot_width=1000, plot_height=200, nonselection_alpha=0.02, tools="pan,wheel_zoom,select" ) return plot
def make_plots(self): ticker1 = self.ticker1 ticker2 = self.ticker2 self.plot = circle(ticker1 + "_returns", ticker2 + "_returns", size=2, title="%s vs %s" %(ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select", title_text_font_size="10pt", nonselection_alpha=0.02 ) self.line_plot1 = self.line_plot(ticker1) self.line_plot2 = self.line_plot(ticker2, self.line_plot1.x_range) self.hist_plots()
def posture_signals(kin_env, m_signals, title='posture graphs', color='#666666', alpha=1.0, radius_factor=1.0, swap_xy=True, x_range=[-1.0, 1.0], y_range=[-1.0, 1.0], **kwargs): for m_signal in m_signals: m_vector = kin_env.flatten_synergies(m_signal) s_signal = kin_env._multiarm.forward_kin(m_vector) xs, ys = [0.0], [0.0] for i in range(kin_env.cfg.dim): xs.append(s_signal['x{}'.format(i + 1)]) ys.append(s_signal['y{}'.format(i + 1)]) if isinstance(kin_env.cfg.lengths, numbers.Real): total_length = kin_env.cfg.lengths * kin_env.cfg.dim else: total_length = sum(kin_env.cfg.lengths) total_length += 0.0 kwargs.update({ 'x_range': x_range, 'y_range': y_range, 'line_color': color, 'line_alpha': alpha, 'fill_color': color, 'fill_alpha': alpha, 'title': title }) if swap_xy: xs, ys = ys, xs plotting.line(xs, ys, line_width=2.0 * radius_factor, **kwargs) plotting.hold(True) plotting.grid().grid_line_color = None plotting.ygrid().grid_line_color = None plotting_axis() plotting.circle(xs[:1], ys[:1], radius=radius_factor * 0.015, **kwargs) plotting.circle(xs[1:-1], ys[1:-1], radius=radius_factor * 0.008, **kwargs) plotting.circle(xs[-1:], ys[-1:], radius=radius_factor * 0.01, color='red', alpha=alpha) plotting.hold(False)
def make_plots(self): ticker1 = self.ticker1 ticker2 = self.ticker2 self.plot = circle( ticker1 + "_returns", ticker2 + "_returns", size=2, title="%s vs %s" %(ticker1, ticker2), source=self.source, plot_width=400, plot_height=400, tools="pan,wheel_zoom,select", title_text_font_size="10pt", nonselection_alpha=0.02, ) self.line_plot1 = self.line_plot(ticker1) self.line_plot2 = self.line_plot(ticker2, self.line_plot1.x_range) self.hist_plots()
def posture_signals( kin_env, m_signals, title="posture graphs", color="#666666", alpha=1.0, radius_factor=1.0, swap_xy=True, x_range=[-1.0, 1.0], y_range=[-1.0, 1.0], **kwargs ): for m_signal in m_signals: m_vector = kin_env.flatten_synergies(m_signal) s_signal = kin_env._multiarm.forward_kin(m_vector) xs, ys = [0.0], [0.0] for i in range(kin_env.cfg.dim): xs.append(s_signal["x{}".format(i + 1)]) ys.append(s_signal["y{}".format(i + 1)]) if isinstance(kin_env.cfg.lengths, numbers.Real): total_length = kin_env.cfg.lengths * kin_env.cfg.dim else: total_length = sum(kin_env.cfg.lengths) total_length += 0.0 kwargs.update( { "x_range": x_range, "y_range": y_range, "line_color": color, "line_alpha": alpha, "fill_color": color, "fill_alpha": alpha, "title": title, } ) if swap_xy: xs, ys = ys, xs plotting.line(xs, ys, line_width=2.0 * radius_factor, **kwargs) plotting.hold(True) plotting.grid().grid_line_color = None plotting.ygrid().grid_line_color = None plotting_axis() plotting.circle(xs[:1], ys[:1], radius=radius_factor * 0.015, **kwargs) plotting.circle(xs[1:-1], ys[1:-1], radius=radius_factor * 0.008, **kwargs) plotting.circle(xs[-1:], ys[-1:], radius=radius_factor * 0.01, color="red", alpha=alpha) plotting.hold(False)
def test_xaxis(self): plt.figure() p = plt.circle([1,2,3], [1,2,3]) self.assertEqual(len(plt.xaxis()), 1) expected = set(plt.xaxis()) ax = LinearAxis() expected.add(ax) p.above.append(ax) self.assertEqual(set(plt.xaxis()), expected) ax2 = LinearAxis() expected.add(ax2) p.above.append(ax2) self.assertEqual(set(plt.xaxis()), expected) p.left.append(LinearAxis()) self.assertEqual(set(plt.xaxis()), expected) p.right.append(LinearAxis()) self.assertEqual(set(plt.xaxis()), expected)
def bokeh_kin(kin_env, m_signal, color='#DF4949', alpha=1.0, **kwargs): m_vector = tools.to_vector(m_signal, kin_env.m_channels) s_signal = kin_env._multiarm.forward_kin(m_vector) xs, ys = [0.0], [0.0] for i in range(kin_env.cfg.dim): xs.append(s_signal['x{}'.format(i + 1)]) ys.append(s_signal['y{}'.format(i + 1)]) xs, ys = ys, xs # we swap x and y for a more symmetrical look if isinstance(kin_env.cfg.lengths, numbers.Real): total_length = kin_env.cfg.lengths * kin_env.cfg.dim else: total_length = sum(kin_env.cfg.lengths) total_length += 0.0 kwargs = { 'plot_height': int(350 * 1.60), 'plot_width': int(350 * 1.60), 'x_range': [-1.0, 1.0], 'y_range': [-1.0, 1.0], 'line_color': color, 'line_alpha': alpha, 'fill_color': color, 'fill_alpha': alpha, 'title': '' } plotting.hold() plotting.line(xs, ys, **kwargs) plotting.grid().grid_line_color = None plotting.xaxis().major_tick_in = 0 plotting.ygrid().grid_line_color = None plotting.yaxis().major_tick_in = 0 plotting.circle(xs[:1], ys[:1], radius=0.015, **kwargs) plotting.circle(xs[1:-1], ys[1:-1], radius=0.008, **kwargs) plotting.circle(xs[-1:], ys[-1:], radius=0.01, color='red') plotting.hold(False)
def bokeh_kin(kin_env, m_signal, color='#DF4949', alpha=1.0, **kwargs): m_vector = tools.to_vector(m_signal, kin_env.m_channels) s_signal = kin_env._multiarm.forward_kin(m_vector) xs, ys = [0.0], [0.0] for i in range(kin_env.cfg.dim): xs.append(s_signal['x{}'.format(i+1)]) ys.append(s_signal['y{}'.format(i+1)]) xs, ys = ys, xs # we swap x and y for a more symmetrical look if isinstance(kin_env.cfg.lengths, numbers.Real): total_length = kin_env.cfg.lengths*kin_env.cfg.dim else: total_length = sum(kin_env.cfg.lengths) total_length += 0.0 kwargs ={'plot_height' : int(350*1.60), 'plot_width' : int(350*1.60), 'x_range' : [-1.0, 1.0], 'y_range' : [-1.0, 1.0], 'line_color' : color, 'line_alpha' : alpha, 'fill_color' : color, 'fill_alpha' : alpha, 'title':'' } plotting.hold() plotting.line(xs, ys, **kwargs) plotting.grid().grid_line_color = None plotting.xaxis().major_tick_in = 0 plotting.ygrid().grid_line_color = None plotting.yaxis().major_tick_in = 0 plotting.circle(xs[ : 1], ys[ : 1], radius=0.015, **kwargs) plotting.circle(xs[ 1:-1], ys[ 1:-1], radius=0.008, **kwargs) plotting.circle(xs[-1: ], ys[-1: ], radius=0.01, color='red') plotting.hold(False)
if yvkey: all_yv.append( sdata["stats"][yvkey] ) ### check for data if not len(all_y): continue fig = bplt.figure() bplt.hold() ### build data source for hover tool source = bplt.ColumnDataSource(data=dict(x=all_x, y=all_y, stefilename=all_stefilename, Nmodes=all_Nmodes, Ngens=all_Ngens, Ntriples=all_Ntriples)) ### plot circle glyphs bplt.circle(all_x, all_y, source=source, tools=TOOLS, fill_color=None, fill_alpha=0.6, line_color=all_color, Title="%s vs %s"%(xlabel, ylabel), plot_width=plot_width, plot_height=plot_height) # bplt.circle(all_x, all_y, radius=radii, source=source, tools=TOOLS, fill_color=None, fill_alpha=0.6, line_color=all_color, Title="%s vs %s"%(xlabel, ylabel)) ### annotate circle glyphs # text(x, y, text=inds, alpha=0.5, text_font_size="5pt", text_baseline="middle", text_align="center", angle=0) ### find hover tool, and tell it what to look for hover = [t for t in bplt.curplot().tools if isinstance(t, HoverTool)][0] hover.tooltips = OrderedDict([ #("index", "$index"), ("(x,y)", "($x, $y)"), ("stefilename", "@stefilename"), ("Nmodes","@Nmodes"), ("Ntriples","@Ntriples"), ("Ngens","@Ngens"), ])
def test_grid(self): plt.figure() p = plt.circle([1,2,3], [1,2,3]) self.assertEqual(len(plt.grid()), 2)
def test_ygrid(self): plt.figure() p = plt.circle([1,2,3], [1,2,3]) self.assertEqual(len(plt.ygrid()), 1) self.assertEqual(plt.ygrid()[0].dimension, 1)
def setUpModule(): global _embed_test_plot _embed_test_plot = circle([1,2], [2,3])
ex_cfg.m_channels = env.m_channels ex_cfg.s_channels = env.s_channels ex = explorers.Explorer.create(ex_cfg) # running the exploration explorations, s_vectors, s_goals = factored.run_exploration(env, ex, N) # making graphs radius, alpha = 1.0, 0.35 if ex_name == 'distrib_corner': radius, alpha = 0.75, 0.15 plotting.circle([0.0], [0.0], radius=1.0, x_range=(-xy_range, xy_range), y_range=(-xy_range, xy_range), fill_color='#000000', fill_alpha=0.075, line_color=None, title='goal distribution for {}'.format(ex_name)) graphs.hold(True) graphs.spread(ex.s_channels, s_vectors=(), s_goals=s_goals, g_radius=radius, g_alpha=alpha, grid=None, title='{} goals'.format(ex_name)) graphs.spread(ex.s_channels, s_vectors=s_vectors, s_goals=(),