line_color='orangered', fill_color='orangered') p1.xaxis.major_label_orientation = pi / 3 p1.yaxis.axis_label = "Porcentaje oscuridad" p2 = Figure(name="p2", tools=TOOLS, plot_width=1200, plot_height=900, y_range=FactorRange(factors=list(df.Nombre)), sizing_mode="scale_width") #list(data2.index) p2.xaxis.formatter = DatetimeTickFormatter(hours=['%d/%m %H:00'], days=['%F']) p2.hbar(y=list(df.Nombre), left=df.c1, right=df.c4, height=0.4, color='orangered') ######################################################################################## hst = df[['oscuridad', 'Potencia']] v1 = hst.Potencia[hst.oscuridad > 95].sum() v2 = hst.Potencia[(hst.oscuridad > 90) & (hst.oscuridad < 95)].sum() v3 = hst.Potencia[(hst.oscuridad > 85) & (hst.oscuridad < 90)].sum() v4 = hst.Potencia[(hst.oscuridad > 80) & (hst.oscuridad < 85)].sum() v5 = hst.Potencia[(hst.oscuridad > 75) & (hst.oscuridad < 80)].sum() v6 = hst.Potencia[(hst.oscuridad > 70) & (hst.oscuridad < 75)].sum() v7 = hst.Potencia[(hst.oscuridad > 65) & (hst.oscuridad < 70)].sum() v8 = hst.Potencia[(hst.oscuridad > 60) & (hst.oscuridad < 65)].sum() v9 = hst.Potencia[(hst.oscuridad > 55) & (hst.oscuridad < 60)].sum()
#get data df1 = pandas.read_csv('n1_trucks.csv') hourwise = [] for i in df1['hour'].unique(): hourwise.append(df1.loc[df1['hour'] == i]) output_file("js_on_change.html") x = hourwise[0]['source'] y = hourwise[0]['number'] source = ColumnDataSource(data=dict(x=x, y=y)) plot = Figure(y_range='y',plot_width=1200, plot_height=1200) plot.hbar(y='y', left=0,right='x', source=source) callback = CustomJS(args=dict(source=source), code=""" var data = source.data; var f = cb_obj.value var x = data['x'] var y = data['y'] x = hourwise[0]['source'] y = hourwise[0]['number'] source.change.emit(); """) slider = Slider(start=0, end=96, value=0, step=1, title="hour") slider.js_on_change('value', callback) layout = column(slider, plot)
model = create_model() model.load_weights('Model/') ############## sources ############## source3 = ColumnDataSource(data=get_most_similar_auto_complete(df, dfe, string_input, TOP_N)) ############## plot ############## title_no = [str(x) for x in range(TOP_N+1, 0, -1)] #['4', '3', '2', '1'] p = Figure(y_range=title_no, tools="", toolbar_location=None, x_range=[0, 3], x_axis_label='Expected View Count', plot_width=500, plot_height=300) p.hbar(y = 'title_no', right = 'pred', fill_alpha=0.8, height= 0.1, source=source3) ############## inputs ############## string_input2 = TextInput(value='Data Scientist', title="Enter Your Job Ad Title here") select_city = Select(options=list(df['city'].unique()), value='Zürich', title='choose a city') select_package = Select(options=['A', 'B', 'C', 'D'], value='D', title='choose a package') select_contract_pct_from = Select(options=[str(x) for x in range(10, 110, 10)], value='100', title='choose from %') select_contract_pct_to = Select(options=[str(x) for x in range(10, 110, 10)], value='100', title='choose to %') select_industry = Select(options=list(df['industry_name'].unique()), value='Industrie diverse', title='choose an industry') ############## updates ##############