Exemple #1
0
def dashboard(request):
    state_xs = [state["lons"] for state in states.values()]
    state_ys = [state["lats"] for state in states.values()]

    state_names = [state for state in states.keys()]
    color_mapper = LogColorMapper(palette=palette)

    rate_dict = {}
    for name in state_names:
        rate_dict[name] = 0

    rate_values = Lead.objects.values('state').annotate(dcount=Count('state'))
    for i in rate_values:
        if i['state'] != None:
            rate_dict[i['state']] = i['dcount']

    print(rate_dict)

    #rate = [float(random.randrange(1, 10)) for _ in range(0, 51)]
    rate = list(rate_dict.values())

    data = dict(
        x=state_xs,
        y=state_ys,
        name=state_names,
        rate=rate,
    )
    TOOLS = "pan,wheel_zoom,reset,hover,save"

    p = figure(title="Number of Leads in Each State",
               tools=TOOLS,
               x_axis_location=None,
               y_axis_location=None,
               tooltips=[("Name", "@name"), ("Count", "@rate"),
                         ("(Long, Lat)", "($x, $y)")],
               x_range=(-130, -60),
               y_range=(20, 60))
    p.grid.grid_line_color = None
    p.hover.point_policy = "follow_mouse"
    p.legend.location = 'top_right'

    p.patches('x',
              'y',
              source=data,
              fill_color={
                  'field': 'rate',
                  'transform': color_mapper
              },
              fill_alpha=0.7,
              line_color="white",
              line_width=0.5)

    #show(p)

    script, div = components(p)
    return render(request, 'bokeh/dashboard.html', {
        'the_script': script,
        'the_div': div
    })
Exemple #2
0
def create_us_state_map(scores):
    from bokeh.sampledata.us_states import data as states

    states = {
        code: states
        for code, states in states.items() if code not in ['AK', 'HI']
    }

    state_xs = [state["lons"] for state in states.values()]
    state_ys = [state["lats"] for state in states.values()]

    teal_palette = [
        '#ffffff', '#e0f2f1', '#b2dfdb', '#80cbc4', '#4db6ac', '#26a69a',
        '#009688', '#00897b', '#00796b', '#00695c'
    ]

    state_names = [state['name'] for state in states.values()]
    state_scores = [
        scores[code] if code in scores.keys() else 0 for code in states.keys()
    ]
    color_mapper = LogColorMapper(palette=teal_palette,
                                  low=0.01,
                                  high=max(scores.values()))

    data = dict(
        x=state_xs,
        y=state_ys,
        name=state_names,
        rate=state_scores,
    )

    TOOLS = "pan,wheel_zoom,reset,hover,save"

    p = figure(title="NLP Ranking Scores Across U.S. States",
               tools=TOOLS,
               x_axis_location=None,
               y_axis_location=None,
               sizing_mode="scale_width",
               plot_width=1100,
               plot_height=700,
               tooltips=[("State", "@name"), ("Score", "@rate{0,0.00}")])
    p.grid.grid_line_color = None
    p.hover.point_policy = "follow_mouse"

    p.patches('x',
              'y',
              source=data,
              fill_color={
                  'field': 'rate',
                  'transform': color_mapper
              },
              fill_alpha=0.7,
              line_color="black",
              line_width=0.5)

    return p
Exemple #3
0
    ["state"] not in ["ak", "hi", "pr", "gu", "vi", "mp", "as"]
]

county_colors = []
for county_id in us_counties:
    if us_counties[county_id]["state"] in [
            "ak", "hi", "pr", "gu", "vi", "mp", "as"
    ]:
        continue
    try:
        rate = unemployment[county_id]
        idx = min(int(rate / 2), 5)
    except KeyError:
        county_colors.append("black")

state_names = [state['name'] for state in states.values()]
color_mapper = LogColorMapper(palette=palette)

source = ColumnDataSource(data=dict(x=state_xs, y=state_ys, name=state_names))

TOOLS = "pan,wheel_zoom,reset,hover,save"
"""year_slider = Slider(start = 2009, end=2017,value=1,step=1,title="Year")
show(widgetbox(year_slider))"""

output_file("choropleth.html", title="choropleth.py example")

p = figure(title="US Unemployment 2009",
           tools=TOOLS,
           toolbar_location="left",
           plot_width=1100,
           plot_height=700)
Exemple #4
0
from bokeh.models import HoverTool, HBox, VBox, Slider, Toggle
from bokeh.plotting import figure, show, ColumnDataSource
from bokeh.sampledata.us_states import data as states
from bokeh.palettes import Purples9

states = {
    code: state
    for code, state in states.items() if code not in ['HI', 'AK']
}


def gen_initial_rate(y):
    return min(np.random.choice([15, 40]) + np.random.uniform(-10, 10), 100)


state_xs = [state['lons'] for state in states.values()]
state_ys = [state['lats'] for state in states.values()]
colors = Purples9[::-1]

names = [state['name'] for state in states.values()]
initial_rates = [gen_initial_rate(1) for _ in states.values()]
state_colors = [colors[int(rate / 20)] for rate in initial_rates]

source = ColumnDataSource(data=dict(
    x=state_xs, y=state_ys, color=state_colors, name=names,
    rate=initial_rates))

TOOLS = ['hover']

p = figure(title='Algorithms Deployed, Iteration 0',
           tools=TOOLS,
Exemple #5
0
from bokeh.plotting import figure, show, ColumnDataSource
from bokeh.sampledata.us_states import data as states
from bokeh.palettes import Purples9

states = {
    code: state for code, state in states.items() if
    code not in ['HI', 'AK']
}

def gen_initial_rate(y):
    return min(
        np.random.choice([15, 40]) + np.random.uniform(-10, 10),
        100
    )

state_xs = [state['lons'] for state in states.values()]
state_ys = [state['lats'] for state in states.values()]
colors = Purples9[::-1]

names = [state['name'] for state in states.values()]
initial_rates = [gen_initial_rate(1) for _ in states.values()]
state_colors = [colors[int(rate / 20)] for rate in initial_rates]

source = ColumnDataSource(data=dict(
    x=state_xs,
    y=state_ys,
    color=state_colors,
    name=names,
    rate=initial_rates
))
Exemple #6
0
def q3(filedir, outputdir, n_iters=10000):
    ec = pd.read_csv(filedir + 'electoralCollege.csv')
    pw = pd.read_csv(filedir + 'probWin.csv')

    tot = pd.merge(ec, pw, on='State')
    tot['ProbWin'] = tot['ProbWin'].str.replace('%', "")

    p1_win = []
    p2_win = []
    for i in tot['ProbWin']:
        p1 = float(int(i) / 100)
        p2 = 1 - p1
        p1_win.append(p1)
        p2_win.append(p2)

    tot['P1 Win'] = p1_win
    tot['P2 Win'] = p2_win
    tot.drop('ProbWin', axis=1)

    # coerce each column in data frame to a list
    state_name = list(tot['State'])
    state_votes = list(tot['Votes'])
    state_p1_probs = list(tot['P1 Win'])
    state_p2_probs = list(tot['P2 Win'])

    # initialize a counter to calculate how many times each party wins
    p1s_sims = 0
    p2s_sims = 0
    for x in range(n_iters):
        p1s = []
        p2s = []
        for y in range(len(tot)):
            win = np.random.choice(['p1', 'p2'], p=[p1_win[y], p2_win[y]])
            if win == 'p1':
                p1s.append(tot['Votes'][y])
            else:
                p2s.append(tot['Votes'][y])
        if sum(p1s) > 270:
            p1s_sims += 1
        else:
            p2s_sims += 1

    # set up the map boundaries for each state
    state_xs = [
        states[code]["lons"] for code in states if code not in ['HI', 'AK']
    ]
    state_ys = [
        states[code]["lats"] for code in states if code not in ['HI', 'AK']
    ]

    # delete outer states in order to keep the map well aligned
    if 'HI' and 'AK' in states.keys():
        del states['HI']
        del states['AK']

    s = tot.iloc[:, 0].values
    # set dictionary values for proportions each state votes for winning party
    props = dict()
    for j in s:
        pwin = np.random.choice(['p1', 'p2'],
                                p=[(p1s_sims / n_iters), (p2s_sims / n_iters)])
        if (pwin == ['p1']):
            props[j] = props.get(j, 0) + float(
                tot.loc[tot['State'] == j]['P1 Win'])
        else:
            props[j] = props.get(j, 0) + float(
                tot.loc[tot['State'] == j]['P2 Win'])

    data = list(states.values())
    final_graph = []
    # set up data in the structure of holoviews
    for x in data:
        x['Votes'] = tot.loc[tot['State'] == str(x['name'])]['Votes']
        x['Party 1'] = str(
            int(
                float(tot.loc[tot['State'] == str(x['name'])]['P1 Win']) *
                100)) + "%"
        x['Party 2'] = str(
            int(
                float(tot.loc[tot['State'] == str(x['name'])]['P2 Win']) *
                100)) + "%"
        x['Proportions'] = props.get(str(x['name']))
        final_graph.append(x)

    choropleth = hv.Polygons(
        final_graph, ['lons', 'lats'],
        [('name', 'State'), ('Votes', 'Votes'),
         ('Party 1', 'Probability of Party 1 Winning'),
         ('Party 2', 'Probability of Party 2 Winning'),
         ('Proportions', 'Proportion Voted for Winning Party')])

    ch = choropleth.options(logz=True,
                            tools=['hover'],
                            xaxis=None,
                            yaxis=None,
                            show_grid=False,
                            show_frame=False,
                            width=575,
                            height=400,
                            colorbar=False,
                            line_color='black',
                            color_index='Proportions',
                            cmap="RdBu")

    hv.save(ch, "jvasanda_hw6_q3.html")
from readData import *

data = createJsonObject("crimeData.json")

year = 2010

del states["HI"]
del states["AK"]

state_xs = [states[code]["lons"] for code in states]
state_ys = [states[code]["lats"] for code in states]

colors = ["#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B0", "#DD1C77", "#980043", "#490303", "#000000"]


state_names = [state['name'] for state in states.values()]


state_colors = []
state_rates = []

for state_id in states:
    try:
        rate = getDataForYear(data, year, state_id)
        state_rates.append(rate)
        rate = math.log(rate) 
        idx = int(rate/2)
        state_colors.append(colors[idx])
    except KeyError:
        state_colors.append("black")
        
Exemple #8
0
                geom = affinity.rotate(geom, 30)
                f['geometry'] = mapping(geom)
    return json.dumps(geojson)


geojson = get_geojson()
[x for x in geojson]

from bokeh.models import HoverTool
from bokeh.plotting import figure, show, output_file, ColumnDataSource
from bokeh.sampledata.us_states import data as states
from bokeh.models import LogColorMapper
from bokeh.palettes import Viridis6 as palette
from bokeh.models import GeoJSONDataSource
states.pop('DC')
state_xs = [state["lons"] for state in states.values()]
state_ys = [state["lats"] for state in states.values()]

colors = ["#F1EEF6", "#D4B9DA", "#C994C7", "#DF65B0", "#DD1C77", "#980043"]
sorter = pd.DataFrame(columns=['wookie'])
for idx, name in enumerate(states):
    sorter.loc[idx] = [states[name]['name']]

final = pd.merge(sorter, final, left_on='wookie',
                 right_on='State').drop('wookie', axis=1)

assert [states[name]['name'] for name in states] == final.State.tolist()

###############################################################################
from bokeh.sampledata.sample_geojson import geojson
state_names = final.State.tolist()
Exemple #9
0
## Choropleth

choro = figure(title="Composite Reimbursement by State 2018 (%)",
               plot_height=575,
               plot_width=1000,
               tools=" wheel_zoom, reset, save")

EXCLUDED = ("ak", "hi", "pr", "gu", "vi", "mp", "as")

state_xs = [states[code]["lons"] for code in states]
state_ys = [states[code]["lats"] for code in states]

## Source data

state_names = [state['name'] for state in states.values()]

state_cc = [state['ccName'] for state in states.values()]

state_rates = [state['reimbursement'] for state in states.values()]

palette.reverse()

color_mapper = LogColorMapper(palette=palette)

choro_source = ColumnDataSource(data=dict(
    x=state_xs,
    y=state_ys,
    name=state_names,
    cost_center=state_cc,
    rate=state_rates,
Exemple #10
0
    def make_dataset(self):

        per_capita = self.per_capita.active == 1
        data_type = self.data_getter.labels[self.data_getter.active].lower()
        date = self.date.value

        data = np.empty(len(US_STATES))

        if data_type in ("cases", "deaths"):

            if not per_capita:
                dt_label = data_type
                label = f"Total New {data_type.title()}"
            else:
                dt_label = f"{data_type}_pc"
                label = f"New {data_type.title()} per 100,000"

            subset = GH_STATES_DATA.loc[GH_STATES_DATA["date"] == date, :]
            for i, (abbrv, state) in enumerate(US_STATES.items()):
                state_name = state["name"]
                value = subset.loc[subset["state"] == state_name,
                                   f"avg_{dt_label}"]
                if not value.empty and not np.isnan(value.values[0]):
                    data[i] = max(0, value.values[0])
                else:
                    data[i] = 0

            maxval = GH_STATES_DATA.loc[:, f"avg_{dt_label}"].max()

        elif data_type == "positivity":

            label = "Positivity (%)"

            subset = TRACKING_DATA.loc[TRACKING_DATA["datetime"] == date,
                                       ("state", "positivity")]
            for i, (abbrv, state) in enumerate(US_STATES.items()):
                value = subset.loc[subset["state"] == abbrv.upper(),
                                   "positivity"]
                if not value.empty and not np.isnan(value.values[0]):
                    data[i] = max(0, value.values[0])
                else:
                    data[i] = 0

            maxval = TRACKING_DATA.loc[:, "positivity"].max()

        interp = (
            compute_log_palette  # if logarithmic else compute_linear_palette
        )

        color_data = {
            "color":
            [interp(PALETTE, maxval / 256, maxval, val) for val in data],
            "value": data,
            "state": [state["name"] for state in US_STATES.values()],
            "lons": [],
            "lats": [],
        }

        for state in US_STATES.values():
            color_data["lons"].append(state["lons"])
            color_data["lats"].append(state["lats"])

        return label, maxval, ColumnDataSource(color_data)
Exemple #11
0
        fit = np.polyfit(years, df2.loc[state, dtype], 1)
        state_data[dtype] = 2018 * fit[0] + fit[1]
        data_2018[n] = state_data



dfs[2018] = pd.DataFrame(data_2018).T
df = pd.concat(dfs, names=['year'], sort=False)



# Selection box
slider_left = Slider(start=2013, end=2018, value=2013, step=1, title='Comparison Year Left')
slider_right = Slider(start=2013, end=2018, value=2014, step=1, title='Comparison Year Right')

state_xs = [state["lons"] for state in states.values()]
state_ys = [state["lats"] for state in states.values()]
state_names = [state['name'] for state in states.values()]

# get color palletes
Blues9.reverse()
diffs = RdBu11.copy()
diffs_prcp = RdBu11.copy()
diffs_prcp.reverse()
# diffs.reverse()
temp_cmap = LinearColorMapper(palette=RdBu11, low=df['tmax'].min(), high=df['tmax'].max())
diff_cmap = LinearColorMapper(palette=diffs, low=-25, high=25)
diff_cmap_prcp = LinearColorMapper(palette=diffs_prcp, low=-25, high=25)
prcp_cmap = LinearColorMapper(palette=Blues9, low=0, high=df['prcp'].max())
aqi_cmap = LinearColorMapper(palette=BrBG11, low=df['Median AQI'].min(), high=df['Median AQI'].max())