Exemple #1
0
def make_qualimap_plots(qmglobals=None, coverage_per_contig=None):
    """Make qualimap summary plots"""
    retval = {
        "fig": {"coverage_per_contig": None, "globals": None},
        "file": {"coverage_per_contig": coverage_per_contig, "globals": qmglobals},
        "uri": {"coverage_per_contig": data_uri(coverage_per_contig), "globals": data_uri(qmglobals)},
    }
    # Globals
    if qmglobals is not None:
        df_all = pd.read_csv(qmglobals)
        df_all["Sample"] = df_all["Sample"].astype("str")
        fig = figure(
            y_range=[0, max(df_all["number of reads"])],
            title="Mapping summary",
            title_text_font_size="12pt",
            plot_width=400,
            plot_height=400,
            x_range=sorted(list(set(df_all["Sample"]))),
        )
        mdotplot(
            fig,
            x="Sample",
            size=10,
            df=df_all,
            alpha=0.5,
            y=["number of reads", "number of mapped reads", "number of duplicated reads", "number of unique reads"],
        )
        xaxis(fig, axis_label="sample", major_label_orientation=np.pi / 3, axis_label_text_font_size="10pt")
        yaxis(fig, axis_label="count", major_label_orientation=1, axis_label_text_font_size="10pt")
        retval["fig"]["globals"] = fig

    # Coverage per contig
    if coverage_per_contig is not None:
        df_all = pd.read_csv(coverage_per_contig, index_col=0)
        df_all["Sample"] = df_all["Sample"].astype("str")
        fig = figure(width=300, height=300)
        points(
            fig, x="chrlen_percent", y="mapped_bases_percent", df=df_all, glyph="text", text="chr", text_font_size="8pt"
        )
        main(fig, title_text_font_size="8pt")
        xaxis(fig, axis_label="Chromosome length of total (%)", axis_label_text_font_size="8pt")
        yaxis(fig, axis_label="Mapped bases of total (%)", axis_label_text_font_size="8pt")

        gp = facet_grid(
            fig,
            x="chrlen_percent",
            y="mapped_bases_percent",
            df=df_all,
            groups=["Sample"],
            width=300,
            height=300,
            share_x_range=True,
            share_y_range=True,
            title_text_font_size="12pt",
        )
        for fig in [item for sublist in gp.children for item in sublist]:
            abline(fig, x="chrlen_percent", y="mapped_bases_percent", df=df_all, slope=1)
        retval["fig"]["coverage_per_contig"] = gp
    return retval
 def test_mdotplot_title(self):
     mdotplot(self._fig,
              x="treatment",
              y=["x", "y"],
              df=self._data,
              size=10,
              alpha=0.5,
              title="test",
              title_text_font_size='12pt')
 def test_mdotplot(self):
     mdotplot(self._fig,
              x="treatment",
              y=["y", "z"],
              df=self._data,
              color=["red", "blue"],
              legend=["y", "z"],
              size=10,
              alpha=0.5)
     output_file("tabort.html")
     show(self._fig)
Exemple #4
0
def make_cutadapt_summary_plot(inputfile):
    df_summary = pd.read_csv(inputfile)
    df_summary["sample"] = df_summary["sample"].astype("str")
    TOOLS = "pan,wheel_zoom,box_zoom,box_select,reset,save"
    fig = figure(tools=TOOLS, width=400, height=400,
                 x_range=sorted(list(set(df_summary["sample"]))),
                 y_range=[0, 105], title="Cutadapt metrics",
                 title_text_font_size='12pt')
    mdotplot(fig, x="sample", y=["read1_pct", "read2_pct"],
             df=df_summary, size=10, alpha=0.5)
    xaxis(fig, axis_label="sample",
          major_label_orientation=np.pi/3,
          axis_label_text_font_size='10pt')
    yaxis(fig, axis_label="percent reads",
          major_label_orientation=1,
          axis_label_text_font_size='10pt')
    return {'fig': fig, 'uri': data_uri(inputfile), 'file': inputfile}