def find_events(ls_symbols, d_data): ''' Finding the event dataframe ''' df_close = d_data['actual_close'] ts_market = df_close['SPY'] print "Finding Events" # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index print len(ldt_timestamps) lookback = 20 bol_vals = bollinger.get_bollinger_values(ls_symbols, d_data, lookback) spy_bol_val = bol_vals['SPY'] for s_sym in ls_symbols: sym_bol_val = bol_vals[s_sym] print len(sym_bol_val) for i in range(0, len(ldt_timestamps) - 1): # Get the bollinger values needed sym_bol_today = sym_bol_val[i] sym_bol_yest = sym_bol_val[i - 1] spy_bol_today = spy_bol_val[i] if sym_bol_today <= -2.0 and sym_bol_yest >= -2.0 and spy_bol_today >= 1.0: df_events[s_sym].ix[ldt_timestamps[i]] = 1 return df_events
def find_events(ls_symbols, d_data): ''' Finding the event dataframe ''' df_close = d_data['actual_close'] ts_market = df_close['SPY'] print "Finding Events" # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index print len(ldt_timestamps) lookback = 20 bol_vals = bollinger.get_bollinger_values(ls_symbols, d_data, lookback) spy_bol_val = bol_vals['SPY'] for s_sym in ls_symbols: sym_bol_val = bol_vals[s_sym] print len(sym_bol_val) for i in range(0, len(ldt_timestamps)-1): # Get the bollinger values needed sym_bol_today = sym_bol_val[i] sym_bol_yest = sym_bol_val[i-1] spy_bol_today = spy_bol_val[i] if sym_bol_today <= -2.0 and sym_bol_yest >= -2.0 and spy_bol_today >= 1.0: df_events[s_sym].ix[ldt_timestamps[i]] = 1 return df_events
def find_events(ls_symbols, d_data): ''' Finding the event dataframe ''' df_close = d_data['actual_close'] ts_market = df_close['SPY'] trades = [] # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index lookback = 20 bol_vals = bollinger.get_bollinger_values(ls_symbols, d_data, lookback) spy_bol_val = bol_vals['SPY'] for s_sym in ls_symbols: sym_bol_val = bol_vals[s_sym] for i in range(1, len(ldt_timestamps)): # Get the bollinger values needed sym_bol_today = sym_bol_val[i] sym_bol_yest = sym_bol_val[i-1] spy_bol_today = spy_bol_val[i] if sym_bol_today <= -1.0 and sym_bol_yest >= -1.0 and spy_bol_today >= 1.0: buy_date = return_dt(str(ldt_timestamps[i])) if i+5 >= len(ldt_timestamps): sell_date = return_dt(str(ldt_timestamps[-1])) else: sell_date = return_dt(str(ldt_timestamps[i+5])) buy_trade = Trade(buy_date.group(1), buy_date.group(2), buy_date.group(3), s_sym, "Buy", 100) sell_trade = Trade(sell_date.group(1), sell_date.group(2), sell_date.group(3), s_sym, "Sell", 100) trades.append(buy_trade) trades.append(sell_trade) return trades
def find_events(ls_symbols, d_data): """ Finding the event dataframe """ df_close = d_data["actual_close"] ts_market = df_close["SPY"] trades = [] # Creating an empty dataframe df_events = copy.deepcopy(df_close) df_events = df_events * np.NAN # Time stamps for the event range ldt_timestamps = df_close.index lookback = 20 bol_vals = bollinger.get_bollinger_values(ls_symbols, d_data, lookback) spy_bol_val = bol_vals["SPY"] for s_sym in ls_symbols: sym_bol_val = bol_vals[s_sym] for i in range(1, len(ldt_timestamps)): # Get the bollinger values needed sym_bol_today = sym_bol_val[i] sym_bol_yest = sym_bol_val[i - 1] spy_bol_today = spy_bol_val[i] if sym_bol_today <= -1.0 and sym_bol_yest >= -1.0 and spy_bol_today >= 1.0: buy_date = return_dt(str(ldt_timestamps[i])) if i + 5 >= len(ldt_timestamps): sell_date = return_dt(str(ldt_timestamps[-1])) else: sell_date = return_dt(str(ldt_timestamps[i + 5])) buy_trade = Trade(buy_date.group(1), buy_date.group(2), buy_date.group(3), s_sym, "Buy", 100) sell_trade = Trade(sell_date.group(1), sell_date.group(2), sell_date.group(3), s_sym, "Sell", 100) trades.append(buy_trade) trades.append(sell_trade) return trades