def main(): # flag for debugging flag_subset = False boosting_type = 'Ada' # 'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #chosen_wc_cache_dir_real = 'chosen_wcs_real.pkl' if not flag_subset else 'chosen_wcs_subset_real.pkl' # data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) # number of bins for boosting num_bins = 25 # number of cpus for parallel computing num_cores = 1 if not flag_subset else 1 # always use 1 when debugging # create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) # create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) # Adaboost boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) # calculate filter values for all training images #start = time.clock() #boost.calculate_training_activations(act_cache_dir, act_cache_dir) #end = time.clock() # print('%f seconds for activation calculation' % (end - start)) #boost.train(chosen_wc_cache_dir) #boost.load_trained_wcs('chosen_wcs_plus.pkl') boost.load_trained_wcs('chosen_wcs.pkl') for i in range(20): id = boost.chosen_wcs[i][1].id print("Filter ID = "+str(id)+" Alpha = "+str(boost.chosen_wcs[i][0])) boost.draw_filter(filters[id],id,boost.chosen_wcs[i][1].polarity) # Test st = 10 original_img = cv2.imread('./test/Face_1.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img, scale_step=st) cv2.imwrite('Result_img_No_1_%s_plus.png' % boosting_type, result_img) original_img = cv2.imread('./test/Face_2.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img, scale_step=st) cv2.imwrite('Result_img_No_2_%s_plus.png' % boosting_type, result_img) original_img = cv2.imread('./test/Face_3.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img, scale_step=st) cv2.imwrite('Result_img_No_3_%s_plus.png' % boosting_type, result_img)
def main(): # flag for debugging flag_subset = False boosting_type = 'Real' # 'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' act_with_negs_cache_dir = 'wc_activations_with_hard_negatives.npy' if not flag_subset else 'wc_activations_with_hard_negatives_subset.npy' # data configurations image_w = 16 image_h = 16 data, labels = get_data_and_labels() # number of bins for boosting num_bins = 25 # number of cpus for parallel computing num_cores = 8 if not flag_subset else 1 #always use 1 when debugging # create Haar filters (10032,2) filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) # create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) # create boost classifier with a pool of weak classifiers boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) # calculate filter values for all training images boost.calculate_training_activations(act_cache_dir, act_cache_dir) # initialize wc threshold and polarity for adaboosting, or # wc thresholds, bin_pqs, and train_assignment for realboosting # if boosting_type is 'Ada': # boost.init_ada_wc_props() # else: # # boost.init_real_wc_props() # boost = get_data('./real_sc/real_sc_initialized.pkl') # boost.train() # boost.visualize() # boost.perform_face_detection() negative_patches = boost.get_negative_patches() save_data(negative_patches, 'hard_negative_patches_1.pkl') # add hard negatives to negative population in training set ./nonface16 add_hard_negatives_to_data(negative_patches)
def main(): #flag for debugging flag_subset = False boosting_type = 'Real' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 6 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type)
def main_real(): f_subset = False boosting_type = 'Real' # 'Real' or 'Ada' te = 100 if not f_subset else 20 acd = 'wc_activations.npy' if not f_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not f_subset else 'chosen_wcs_subset.pkl' # data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' img_w = 16 img_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, img_w, img_h, f_subset) data = integrate_imgs(normalize(data)) # number of bins for boosting nb = 25 # number of cpus for parallel computing nc = 8 if not f_subset else 1 # always use 1 when debugging filters = generate_Haar_filters(4, 4, 16, 16, img_w, img_h, f_subset) drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) boost = Boosting_Classifier(filters, data, labels, te, nb, drawer, nc, boosting_type) # calculating filter values for all training imgs start = time.clock() boost.calculate_training_activations(acd, acd) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, None) boost.visualize() org_img1 = cv2.imread('./Testing_imgs/Face_1.jpg', cv2.IMREAD_GRAYSCALE) result_img1 = boost.face_detection(org_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img1) org_img2 = cv2.imread('./Testing_imgs/Face_2.jpg', cv2.IMREAD_GRAYSCALE) result_img2 = boost.face_detection(org_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img2)
def main(): #flag for debugging flag_subset = False boosting_type = 'Real' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' # data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) # number of bins for boosting num_bins = 25 # number of cpus for parallel computing num_cores = 8 if not flag_subset else 1 #always use 1 when debugging # create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) # create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) # create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) # calculate filter values for all training images start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir) boost.visualize() original_img = cv2.imread('./Testing_Images/Face_1.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img)
def main(): #flag for debugging flag_subset = False boosting_type = 'Ada' #'Real' or 'Ada' training_epochs = 101 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' plot_haar_filter = 'haar_filters' if not flag_subset else 'haar_filters_subset' plot_sc_errors = 'sc_errors' if not flag_subset else 'sc_errors_subset' steps = [0, 10, 50, 100] if not flag_subset else [0, 10] #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) #---HARD NEGATIVE MINING-- #putting non-faces into training data for hard-negative mining '''for i in range(3): negative_patches = pickle.load(open('wrong_patches_'+str(i)+'.pkl', 'rb')) data = np.append(data, negative_patches, axis = 0) labels = np.append(labels, np.full(len(negative_patches), -1))''' #pdb.set_trace() data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 8 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) print("Length of filters " + str(len(filters))) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type, chosen_wc_cache_dir) #calculate filter values for all training images start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) print("Start of train process") boost.train(chosen_wc_cache_dir) print("End of train process") print("Plotting Haar Filters") boost.display_haar_filters(chosen_wc_cache_dir, plot_haar_filter) print("Plotting training error of strong classifier") boost.draw_sc_errors(chosen_wc_cache_dir, plot_sc_errors) #Histogram, ROC, weak classfier errors boost.visualize(steps, chosen_wc_cache_dir) print("------Face Detection---------") original_img = cv2.imread('./Testing_Images/Face_2.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img) cv2.imwrite('Result_Face2_hardneg.png', result_img) original_img = cv2.imread('./Testing_Images/Face_3.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img) cv2.imwrite('Result_Face3_hardneg.png', result_img) #HARD NEGATIVE MINING '''
def main(): #flag for debugging f_subset = True hard_neg = False boosting_type = 'Ada' te = 100 if not f_subset else 20 # training epochs acd = 'wc_activations.npy' if not f_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not f_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' # HERE, WE CONSIDER THE DIMENSIONS OF THE FACE AND THE NON- FACE IMAGES TO BE 16X16 FOR PERFORMIMNG THE ADABOOST FACE RECOGNITION img_w = 16 img_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, img_w, img_h, f_subset) data = integrate_imgs(normalize(data)) #number of bins for boosting nb = 25 #number of cpus for parallel computing nc = 8 if not f_subset else 1 #always use 1 when debugging filters = generate_Haar_filters(4, 4, 16, 16, img_w, img_h, f_subset) drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) boost = Boosting_Classifier(filters, data, labels, te, nb, drawer, nc, boosting_type) #calculate filter values for all training imgs start = time.clock() #boost.calculate_training_activations(acd, acd) boost.calculate_training_activations(acd, acd) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) boost.visualize() #face detection starts from here org_img = cv2.imread('./Testing_imgs/Face_1.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(org_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img) if hard_neg == True: #neg_img start = time.clock() for i in range(1, 3): import os sd = os.path.join(os.path.curdir, 'Testing_imgs') print(os.listdir(sd)) ipath = os.path.join(sd, 'Non_Face_' + str(i) + '.jpg') print(ipath) img = cv2.imread(ipath, cv2.IMREAD_GRAYSCALE) print("i", i) new_data = boost.get_hard_negative_patches(img) #boost.calculate_training_activations(, ) load_dir = "hard_neg_" + str(i) + acd save_dir = "hard_neg_" + str(i) + acd print( 'Calculate activations for %d weak classifiers, using %d imags.' % (len(boost.weak_classifiers), new_data.shape[0])) if load_dir is not None and os.path.exists(load_dir): print('[Find cached activations, %s loading...]' % load_dir) wc_activations = np.load(load_dir) else: if boost.nc == 1: wc_activations = [ wc.apply_filter(new_data) for wc in boost.weak_classifiers ] else: from joblib import Parallel, delayed wc_activations = Parallel(n_jobs=boost.nc)( delayed(wc.apply_filter)(new_data) for wc in boost.weak_classifiers) wc_activations = np.array(wc_activations) if save_dir is not None: print('Writing results to disk...') np.save(save_dir, wc_activations) print('[Saved calculated activations to %s]' % save_dir) for wc in boost.weak_classifiers: wc.activations = np.concatenate( (wc.activations, wc_activations[wc.id, :])) boost.data = np.concatenate((boost.data, new_data)) newlabels = np.ones((new_data.shape[0])) newlabels = newlabels * -1 boost.labels = np.concatenate((boost.labels, newlabels)) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) boost.visualize()
data = integrate_images(normalize(data)) # number of bins for boosting num_bins = 25 # number of cpus for parallel computing #num_cores = 8 if not flag_subset else 1 #always use 1 when debugging num_cores = 4 # create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) # create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) # create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) ######### start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) ######### training_error = boost.train_Ada(chosen_wc_cache_dir) boost.visualize() '''boost.train_Real(chosen_wc_cache_dir) boost.visualize()''' #Plot the top 20 filters '''plt.figure(figsize=(20,20))
def main(): #flag for debugging flag_subset = False boosting_type = 'Real' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 #act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' act_cache_dir = 'wc_activations_45k.npy' if not flag_subset else 'wc_activations_subset.npy' #chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' chosen_wc_cache_dir = 'chosen_wcs_45k.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = '/Users/paul/Desktop/UCLA/2018fall/stat231/project2/newface16' neg_data_dir = '/Users/paul/Desktop/UCLA/2018fall/stat231/project2/nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 8 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images #start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) #end = time.clock() #print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) #boost.visualize() # Hard Negative Mining original_img = cv2.imread( '/Users/paul/Desktop/UCLA/2018fall/stat231/project2/Testing_Images/Non_Face_1.jpg', cv2.IMREAD_GRAYSCALE) name = 'Non_Face_1' result_img = boost.face_detection(original_img, name) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img) hard_neg_patches = boost.get_hard_negative_patches(original_img, name) new_data = np.array(list(data) + list(hard_neg_patches[0, :, :, :])) new_labels = np.array( list(labels) + [-1 for i in range(hard_neg_patches.shape[1])]) hard_neg_cache_dir = 'wc_activations_hard_neg.npy' boost_hard_neg = Boosting_Classifier(filters, new_data, new_labels, training_epochs, num_bins, drawer, num_cores, boosting_type) boost_hard_neg.calculate_training_activations(hard_neg_cache_dir, hard_neg_cache_dir) hard_neg_chosen_wc_cache_dir = 'chosen_wcs_hard_neg.pkl' boost_hard_neg.train(hard_neg_chosen_wc_cache_dir, hard_neg_chosen_wc_cache_dir) boost_hard_neg.visualize() # Test original_img = cv2.imread( '/Users/paul/Desktop/UCLA/2018fall/stat231/project2/Testing_Images/Face_1.jpg', cv2.IMREAD_GRAYSCALE) name = 'Face_1' result_img = boost_hard_neg.face_detection(original_img, name) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img)
def main(): #flag for debugging flag_subset = False boosting_type = 'Ada' #'Real' or 'Ada' training_epochs = 150 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 32 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) #boost.train("bullshit_train.pkl") boost.visualizer.display_haar(boost.chosen_wcs,20) #boost.visualize() # test_img = './Test/Face_3.jpg' # original_img = cv2.imread(test_img, cv2.IMREAD_GRAYSCALE) # img_rgb = cv2.imread(test_img) # result_img = boost.face_detection(original_img, img_rgb) # cv2.imwrite('Result_img_%s.png' % boosting_type, result_img) #negative training # negative_patches, negative_patches_nms = boost.get_hard_negative_patches(cv2.imread('./Test/Non_face_1.jpg', cv2.IMREAD_GRAYSCALE)) # print(negative_patches.shape, negative_patches_nms.shape) # pickle.dump(negative_patches, open("negative_patches_1.pkl", 'wb')) # pickle.dump(negative_patches_nms, open("negative_patches_nms_1.pkl", 'wb')) # # negative_patches, negative_patches_nms = boost.get_hard_negative_patches(cv2.imread('./Test/Non_face_2.jpg', cv2.IMREAD_GRAYSCALE)) # print(negative_patches.shape, negative_patches_nms.shape) # pickle.dump(negative_patches, open("negative_patches_2.pkl", 'wb')) # pickle.dump(negative_patches_nms, open("negative_patches_nms_2.pkl", 'wb')) # # negative_patches, negative_patches_nms = boost.get_hard_negative_patches(cv2.imread('./Test/Non_face_3.jpg', cv2.IMREAD_GRAYSCALE)) # print(negative_patches.shape, negative_patches_nms.shape) # pickle.dump(negative_patches, open("negative_patches_3.pkl", 'wb')) # pickle.dump(negative_patches_nms, open("negative_patches_nms_3.pkl", 'wb')) # #load negative hard mining data # negative1 = pickle.load(open("negative_patches_1.pkl", 'rb')) # negative2 = pickle.load(open("negative_patches_2.pkl", 'rb')) # negative3 = pickle.load(open("negative_patches_3.pkl", 'rb')) # data = np.r_[data, negative1, negative2, negative3] # print("Starting with data of shape ", data.shape) # labels = np.r_[labels, np.ones(negative1.shape[0])*-1, np.ones(negative2.shape[0])*-1, np.ones(negative3.shape[0])*-1] # print("Starting with labels of shape ", labels.shape) # # boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) # # calculate filter values for all training images # start = time.time() # boost.calculate_training_activations("wc_activations_nhm.npy","wc_activations_nhm.npy") # end = time.time() # print('%f seconds for activation calculation' % (end - start)) # # boost.train("chosen_wcs_nhm.pkl","chosen_wcs_nhm.pkl") test_img = './Test/Non_face_1.jpg' original_img = cv2.imread(test_img, cv2.IMREAD_GRAYSCALE) img_rgb = cv2.imread(test_img) result_img = boost.face_detection(original_img, img_rgb,10) cv2.imwrite('Result_nms_1.png', result_img) test_img = './Test/Non_face_2.jpg' original_img = cv2.imread(test_img, cv2.IMREAD_GRAYSCALE) img_rgb = cv2.imread(test_img) result_img = boost.face_detection(original_img, img_rgb,10) cv2.imwrite('Result_nms_2.png', result_img) test_img = './Test/Non_face_3.jpg' original_img = cv2.imread(test_img, cv2.IMREAD_GRAYSCALE) img_rgb = cv2.imread(test_img) result_img = boost.face_detection(original_img, img_rgb,10) cv2.imwrite('Result_nms_3.png', result_img)
data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 1 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #Adaboost real = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images start = time.clock() real.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() #print('%f seconds for activation calculation' % (end - start)) real.load_trained_wcs('chosen_wcs.pkl') real.train(chosen_wc_cache_dir_real) #st = 1 #ii = cv2.imread('./Test Images 2018/Hard Negative 1.jpeg', cv2.IMREAD_GRAYSCALE) #wrong_img = boost.get_hard_negative_patches(ii,scale_step=st)
def main(): #flag for debugging flag_subset = False boosting_type = 'Ada' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16/newface16' neg_data_dir = 'nonface16/nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) #compute integral image data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = -1 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs,num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images start = time.clock() #calculating activations by applying the Haar filters to the integral images. boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) #Calling the training function for error calculationa nd weight updation boost.train(chosen_wc_cache_dir) #visualisation of results: Plotting of Histograms, ROC curves, graphs boost.visualize() #Face Detection for 3 test images for i in range(3): original_img = cv2.imread('Face_%d.jpg' %i, cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img) cv2.imwrite('Result_img_%s_%d.png' % boosting_type, %i, result_img) #hard negative mining for i in range(3): hard_neg_data_dir='Hard_neg_data_%d.pkl' %i hard_neg_label_dir='Hard_neg_labels_%d.pkl' %i #load hard negatives into original data and retrain if hard_neg_data_dir is not None and os.path.exists(hard_neg_data_dir): print('[Find cached hard negative data %s loading...]' % hard_neg_data_dir) patches=pickle.load(open(hard_neg_data_dir, 'rb')) hard_neg_labels=pickle.load(open(hard_neg_label_dir,'rb')) hard_neg_labels=hard_neg_labels[:,0,0] boost.data=np.concatenate((boost.data,patches), axis=0) boost.labels=np.concatenate((boost.labels, hard_neg_labels), axis=0) #compute hard negatives from non-face images and store result in pickle file else: back_img = cv2.imread('Non_face_%d.jpg' %(i+1), cv2.IMREAD_GRAYSCALE) patches = boost.get_hard_negative_patches( back_img,scale_step = 10) patches=patches[0] hard_labels=np.full(boost.labels.shape, fill_value=-1) pickle.dump(patches, open('Hard_neg_data_%d.pkl' %i, 'wb')) pickle.dump(hard_labels,open('Hard_neg_labels_%d.pkl' %i, 'wb'))
def main(): #flag for debugging flag_subset = True hard_neg = False boosting_type = 'Ada' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 8 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images start = time.clock() #boost.calculate_training_activations(act_cache_dir, act_cache_dir) boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) boost.visualize() #face detection original_img = cv2.imread('./Testing_Images/Face_1.jpg', cv2.IMREAD_GRAYSCALE) result_img = boost.face_detection(original_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img) if hard_neg == True: #neg_img start = time.clock() for i in range(1, 3): import os sd = os.path.join(os.path.curdir, 'Testing_images') print(os.listdir(sd)) ipath = os.path.join(sd, 'Non_Face_' + str(i) + '.jpg') print(ipath) img = cv2.imread(ipath, cv2.IMREAD_GRAYSCALE) print("i", i) new_data = boost.get_hard_negative_patches(img) #boost.calculate_training_activations(, ) load_dir = "hard_neg_" + str(i) + act_cache_dir save_dir = "hard_neg_" + str(i) + act_cache_dir print( 'Calculate activations for %d weak classifiers, using %d imags.' % (len(boost.weak_classifiers), new_data.shape[0])) if load_dir is not None and os.path.exists(load_dir): print('[Find cached activations, %s loading...]' % load_dir) wc_activations = np.load(load_dir) else: if boost.num_cores == 1: wc_activations = [ wc.apply_filter(new_data) for wc in boost.weak_classifiers ] else: from joblib import Parallel, delayed wc_activations = Parallel(n_jobs=boost.num_cores)( delayed(wc.apply_filter)(new_data) for wc in boost.weak_classifiers) wc_activations = np.array(wc_activations) if save_dir is not None: print('Writing results to disk...') np.save(save_dir, wc_activations) print('[Saved calculated activations to %s]' % save_dir) for wc in boost.weak_classifiers: wc.activations = np.concatenate( (wc.activations, wc_activations[wc.id, :])) boost.data = np.concatenate((boost.data, new_data)) newlabels = np.ones((new_data.shape[0])) newlabels = newlabels * -1 boost.labels = np.concatenate((boost.labels, newlabels)) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir, chosen_wc_cache_dir) boost.visualize()
neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) # number of bins for boosting num_bins = 25 # number of cpus for parallel computing #num_cores = 8 if not flag_subset else 1 #always use 1 when debugging num_cores = 4 # create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) # create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) # create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) ######### start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) ######### training_error=boost.train_Ada(chosen_wc_cache_dir) boost.visualize()
def main(): #flag for debugging flag_subset = False boosting_type = 'Ada' #'Real' or 'Ada' training_epochs = 100 if not flag_subset else 20 act_cache_dir = 'wc_activations.npy' if not flag_subset else 'wc_activations_subset.npy' chosen_wc_cache_dir = 'chosen_wcs.pkl' if not flag_subset else 'chosen_wcs_subset.pkl' #data configurations pos_data_dir = 'newface16' neg_data_dir = 'nonface16' image_w = 16 image_h = 16 data, labels = load_data(pos_data_dir, neg_data_dir, image_w, image_h, flag_subset) data = integrate_images(normalize(data)) #number of bins for boosting num_bins = 25 #number of cpus for parallel computing num_cores = 6 if not flag_subset else 1 #always use 1 when debugging #create Haar filters filters = generate_Haar_filters(4, 4, 16, 16, image_w, image_h, flag_subset) #create visualizer to draw histograms, roc curves and best weak classifier accuracies drawer = Visualizer([10, 20, 50, 100], [1, 10, 20, 50, 100]) #create boost classifier with a pool of weak classifier boost = Boosting_Classifier(filters, data, labels, training_epochs, num_bins, drawer, num_cores, boosting_type) #calculate filter values for all training images start = time.clock() boost.calculate_training_activations(act_cache_dir, act_cache_dir) end = time.clock() print('%f seconds for activation calculation' % (end - start)) boost.train(chosen_wc_cache_dir) if (boosting_type == 'Ada'): boost.visualize() original_img = cv2.imread('./Testing_Images/Face_4.jpg', cv2.IMREAD_GRAYSCALE) original_rgb_img = cv2.imread('./Testing_Images/Face_4.jpg') result_img = boost.face_detection(original_img, original_rgb_img) cv2.imwrite('Result_img_%s.png' % boosting_type, result_img) save_hard_neg = 'hard_neg.pkl' save_hard_neg_labels = 'hard_neg_label.pkl' if (os.path.exists(save_hard_neg)): final_hard_negatives = pickle.load(open(save_hard_neg, 'rb')) final_neg_labels = pickle.load(open(save_hard_neg_labels, 'rb')) else: for i in range(3): hard_negative_img = cv2.imread( './Testing_Images/Non_face_' + str(i + 1) + '.jpg', cv2.IMREAD_GRAYSCALE) hard_negatives = boost.get_hard_negative_patches( hard_negative_img) print("No. of hard negative patches: ", hard_negatives.shape) hard_neg_labels = np.full((hard_negatives.shape[0]), -1) if (i == 0): final_hard_negatives = hard_negatives final_neg_labels = hard_neg_labels else: final_hard_negatives = np.append(final_hard_negatives, hard_negatives, axis=0) final_neg_labels = np.append(final_neg_labels, hard_neg_labels, axis=0) pickle.dump(final_hard_negatives, open(save_hard_neg, 'wb')) pickle.dump(final_neg_labels, open(save_hard_neg_labels, 'wb')) boost.data = np.append(boost.data, final_hard_negatives, axis=0) boost.labels = np.append(boost.labels, final_neg_labels, axis=0) new_act_cache_dir = 'new_wc_activations.npy' if not flag_subset else 'new_wc_activations_subset.npy' new_chosen_wc_cache_dir = 'new_chosen_wcs.pkl' if not flag_subset else 'new_chosen_wcs_subset.pkl' start = time.clock() boost.calculate_training_activations(new_act_cache_dir, new_act_cache_dir) end = time.clock() boost.train(new_chosen_wc_cache_dir) original_img = cv2.imread('./Testing_Images/Face_4.jpg', cv2.IMREAD_GRAYSCALE) original_rgb_img = cv2.imread('./Testing_Images/Face_4.jpg') result_img = boost.face_detection(original_img, original_rgb_img) cv2.imwrite('New_result_img_%s.png' % boosting_type, result_img) else: boost.real_visualize()