Exemple #1
0
def main():
    from bootstrapping_olympics.extra.reprep import ReprepPublisher

    usage = ""
    parser = OptionParser(usage=usage)
    parser.disable_interspersed_args()
    parser.add_option("-o",
                      dest='outdir',
                      default='diffeo_analysis',
                      help="Output directory [%default].")
    parser.add_option("-p", dest='pickle', help="Saved agent state")
    parser.add_option("-t", dest='templates', help="Directory with templates")
    (options, args) = parser.parse_args()
    if args:
        raise Exception('Extra args')

    print('Loading %r' % options.pickle)
    with open(options.pickle) as f:
        data = pickle.load(f)
    print('(done)')

    state = data.agent_state
    confid = '%s-%s' % (data.id_robot, data.id_agent)
    publisher = ReprepPublisher(confid)

    dd = state['diffeo_dynamics']

    actions = []

    for cmd_index, de in dd.commands2dynamics.items():
        original_cmd = dd.commands2label[cmd_index]
        print('Summarizing %s' % original_cmd)
        diffeo = de.summarize()
        a = Action(
            diffeo=diffeo,
            label="u%s" % cmd_index,  # index=cmd_index,
            invertible=False,
            primitive=True,
            original_cmd=original_cmd)
        actions.append(a)


#    actions = [actions[1], actions[4]]

    templates = list(load_templates(options.templates, shape=diffeo.d.shape))

    for template in templates[:1]:
        image = template.image
        name = template.name
        for action in actions:
            section_name = '%s-%s_%s_%s' % (name, action, action.label,
                                            action.original_cmd)
            print(section_name)
            S = publisher.section(section_name)
            compute_effects(S, action, image)

    filename = os.path.join(options.outdir, "%s-preds.html" % confid)
    publisher.r.to_html(filename)
Exemple #2
0
def main():
    from bootstrapping_olympics.extra.reprep import ReprepPublisher

    usage = ""
    parser = OptionParser(usage=usage)
    parser.disable_interspersed_args()
    parser.add_option("-o", dest='outdir', default='diffeo_analysis',
                      help="Output directory [%default].")
    parser.add_option("-p", dest='pickle',
                      help="Saved agent state")
    parser.add_option("-t", dest='templates', help="Directory with templates")
    (options, args) = parser.parse_args()
    if args:
        raise Exception('Extra args')

    print('Loading %r' % options.pickle)
    with open(options.pickle) as f:
        data = pickle.load(f)
    print('(done)')

    state = data.agent_state
    confid = '%s-%s' % (data.id_robot, data.id_agent)
    publisher = ReprepPublisher(confid)

    dd = state['diffeo_dynamics']

    actions = []

    for cmd_index, de in dd.commands2dynamics.items():
        original_cmd = dd.commands2label[cmd_index]
        print('Summarizing %s' % original_cmd)
        diffeo = de.summarize()
        a = Action(diffeo=diffeo, label="u%s" % cmd_index,  # index=cmd_index,
               invertible=False, primitive=True, original_cmd=original_cmd)
        actions.append(a)

#    actions = [actions[1], actions[4]]

    templates = list(load_templates(options.templates, shape=diffeo.d.shape))

    for template in templates[:1]:
        image = template.image
        name = template.name
        for action in actions:
            section_name = '%s-%s_%s_%s' % (name, action,
                                            action.label, action.original_cmd)
            print(section_name)
            S = publisher.section(section_name)
            compute_effects(S, action, image)

    filename = os.path.join(options.outdir, "%s-preds.html" % confid)
    publisher.r.to_html(filename)
Exemple #3
0
def actions_analysis(args):
    from bootstrapping_olympics.extra.reprep import ReprepPublisher
    np.seterr(all='raise')
    usage = ""
    parser = OptionParser(usage=usage)
    parser.disable_interspersed_args()
    parser.add_option("-o", dest='outdir')
    parser.add_option("--actions", dest='actions', help="Saved actions")
    (options, args) = parser.parse_args(args=args)

    if not args:
        msg = ('Please supply command. Available: %s' %
               ", ".join(commands.keys()))
        raise Exception(msg)

    if options.outdir is None:
        raise Exception('Please supply "outdir".')
    if options.actions is None:
        raise Exception('Please supply "actions".')

    cmd = args[0]
    cmd_options = args[1:]

    if not cmd in commands:
        msg = ('Unknown command %r. Available: %s.' %
               (cmd, ", ".join(commands.keys())))
        raise Exception(msg)

    print('Loading %r' % options.actions)
    with open(options.actions) as f:
        data = pickle.load(f)
    print('(done)')

    id_robot = data['id_robot']
    id_agent = data['id_agent']
    actions = data['actions']

    print('id_robot: %s' % id_robot)
    print('id_agent: %s' % id_agent)

    for action in actions:
        print('* %s' % action)

    confid = '%s-%s' % (id_robot, id_agent)
    publisher = ReprepPublisher(confid)

    data['publisher'] = publisher

    commands[cmd](options, data, cmd_options)

    filename = os.path.join(options.outdir, cmd, "%s.html" % confid)
    logger.info('writing to file %r' % filename)
    publisher.r.to_html(filename)
def main():
    from   bootstrapping_olympics.extra.reprep import ReprepPublisher

    N = 20
    K = 2

    # M = np.random.rand(N, N, K)
    M = np.zeros((K, N, N))
    for i, j in itertools.product(range(N), range(N)):
        if i <= j:
            M[:, i, j] = 0
        else:
            M[:, i, j] = np.random.rand(K)

    M[:, :, :] = 0
    M[0, 5, 10] = 1
    M[1, 15, 10] = -1

    bds = BDSEstimator2()

    y_mean = np.random.rand(N)
    A = np.random.randn(N, N)
    T = 10000

    Au = np.random.randn(K, K)

    error_M = []
    error_M2 = []
    for t in range(T):
        u = np.dot(Au, np.random.randn(K))
#        if (T - 1) % 100 == 0:
#            u = 0 * u
        y = y_mean + np.dot(A, np.random.randn(N))
        y_dot = bds_dynamics(M, y, u)
        dt = 0.1
        bds.update(y=y, y_dot=y_dot, u=u, dt=dt)

        if t > T / 2:
            bds.fits1.reset()
            bds.fits2.reset()

        if t % 100 == 0:
            Mest = bds.get_M()
            e = np.abs(M - Mest).mean()
            error_M.append(e)
            Mest2, M2info = bds.get_M2() #@UnusedVariable
            e2 = np.abs(M - Mest2).mean()
            error_M2.append(e2)
            sys.stderr.write('%8d/%d %-10.5g %-10.5g  \n' % (t, T, e, e2))
            pass

    rp = ReprepPublisher('bds_estimator_test_learn')
    Mest = bds.get_M()

    Merr = np.abs(M - Mest)
    bds.publish(rp)

    for i in range(K):
        rp.array_as_image('M%s' % i, M[i, :, :])

    for i in range(K):
        rp.array_as_image('est_M%s' % i, Mest[i, :, :])

    for i in range(K):
        rp.array_as_image('Merr%s' % i, Merr[i, :, :])

    with rp.plot('error') as pylab:
        pylab.semilogy(np.array(error_M), 'x')
        pylab.semilogy(np.array(error_M2), 'ro')
        pylab.axis((0, len(error_M), 0, max(error_M) * 1.1))
    rp.r.to_html('bds_estimator_test_learn.html')