def test_lower_must_be_less_than_upper(self): with raises(ValueError): Bound(lower=1.0, upper=0.0)
# Now we'll set up the main BO object. First we need to create a surrogate model. # We'll use a GPyGPSurrogate with an RBF kernel. See the GPyGPSurrogate class for # why we have to create this slightly funky initializer function first. def gp_initializer(x, y): return GPy.models.GPRegression(x, y, kernel=GPy.kern.RBF(input_dim=1), noise_var=1e-10, normalizer=True) surrogate = GPyGPSurrogate(gp_initializer=gp_initializer) acquistion_function = LCB(surrogate=surrogate) bounds = Bounds(bounds=[Bound(lower=0.0, upper=1.0)]) optimizer = DirectOptimizer(acquisition_function=acquistion_function, bounds=bounds, maxf=100) # Now we create the BO object... bo = BayesOpt( objective_function=forrester, surrogate=surrogate, acquisition_function=acquistion_function, optimizer=optimizer, bounds=bounds, initial_design=SobolSequenceInitialDesign(), callbacks=[PlottingCallback()], )
def bounds(self, lowers, uppers): return Bounds( bounds=[Bound(lower=l, upper=u) for l, u in zip(lowers, uppers)])
def bounds(): return Bounds(bounds=[Bound(lower=0.0, upper=1.0)])