def predict(self, image): if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3): image = resize_with_pad(image) image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) image = image.astype('float32') image /= 255 result = self.model.predict_proba(image) print(result) result = self.model.predict_classes(image) return result[0]
def predict(self, image): if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3): image = resize_with_pad(image) image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) image = image.astype('float32') image /= 255 result = self.model.predict_proba(image) oy = round(result[0][0],4) print('&&&&&&&&&&&&&',round(result[0][0],4), '@@@',round(result[0][1],4)) result = self.model.predict_classes(image) print('*******************************',result[0]) return result[0], oy
def predict(self, image): if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3): image = resize_with_pad(image) image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) image = image.astype('float32') image /= 255 # 樣本比率 proba # result = self.model.predict_proba(image) # print(str(result[0][0])+'\n',str(result[0][1])+'\n',str(result[0][0]+result[0][1])+'\n') # 分類條件 result = self.model.predict_classes(image) # print(result.size) return result[0]
def predict(self, image): if image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) image = image.astype('float32') image /= 255 result = self.model.predict_proba(image) print(result) result = self.model.predict_classes(image) return result[0]
self.model.save(file_path) def load(self, file_path=FILE_PATH): print('Model Loaded.') self.model = load_model(file_path) def predict(self, image): <<<<<<< HEAD #print('image.shape:', image.shape) ''' if image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) ''' if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE): image = resize_with_pad(image) image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE)) elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3): image = resize_with_pad(image) image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3)) image = image.astype('float32') image /= 255 result = self.model.predict_proba(image) #print(result) result = self.model.predict_classes(image) return result[0] def evaluate(self, dataset): score = self.model.evaluate(dataset.X_test, dataset.Y_test, verbose=0) print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))