Exemple #1
0
    def predict(self, image):
        if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
            image = resize_with_pad(image)
            image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
        image = image.astype('float32')
        image /= 255
        result = self.model.predict_proba(image)
        print(result)
        result = self.model.predict_classes(image)

        return result[0]
Exemple #2
0
    def predict(self, image):
        if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
            image = resize_with_pad(image)
            image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
        image = image.astype('float32')
        image /= 255
        result = self.model.predict_proba(image)
        print(result)
        result = self.model.predict_classes(image)

        return result[0]
Exemple #3
0
 def predict(self, image):
     if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
         image = resize_with_pad(image)
         image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
     elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
         image = resize_with_pad(image)
         image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
     image = image.astype('float32')
     image /= 255
     result = self.model.predict_proba(image)
     oy = round(result[0][0],4)
     print('&&&&&&&&&&&&&',round(result[0][0],4), '@@@',round(result[0][1],4))
     result = self.model.predict_classes(image)
     print('*******************************',result[0])
     return result[0], oy 
Exemple #4
0
    def predict(self, image):
        if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
            image = resize_with_pad(image)
            image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
        image = image.astype('float32')
        image /= 255
        
        # 樣本比率 proba
        # result = self.model.predict_proba(image)
        # print(str(result[0][0])+'\n',str(result[0][1])+'\n',str(result[0][0]+result[0][1])+'\n')

        # 分類條件
        result = self.model.predict_classes(image)
        # print(result.size)
        return result[0]
    def predict(self, image):
        if image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        image = image.astype('float32')
        image /= 255
        result = self.model.predict_proba(image)
        print(result)
        result = self.model.predict_classes(image)

        return result[0]
Exemple #6
0
        self.model.save(file_path)

    def load(self, file_path=FILE_PATH):
        print('Model Loaded.')
        self.model = load_model(file_path)

    def predict(self, image):
<<<<<<< HEAD
        #print('image.shape:', image.shape)
        '''
        if image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        '''
        if K.image_dim_ordering() == 'th' and image.shape != (1, 3, IMAGE_SIZE, IMAGE_SIZE):
            image = resize_with_pad(image)
            image = image.reshape((1, 3, IMAGE_SIZE, IMAGE_SIZE))
        elif K.image_dim_ordering() == 'tf' and image.shape != (1, IMAGE_SIZE, IMAGE_SIZE, 3):
            image = resize_with_pad(image)
            image = image.reshape((1, IMAGE_SIZE, IMAGE_SIZE, 3))
        image = image.astype('float32')
        image /= 255
        result = self.model.predict_proba(image)
        #print(result)
        result = self.model.predict_classes(image)

        return result[0]

    def evaluate(self, dataset):
        score = self.model.evaluate(dataset.X_test, dataset.Y_test, verbose=0)
        print("%s: %.2f%%" % (self.model.metrics_names[1], score[1] * 100))