Exemple #1
0
 def _get_model(self, dtype=torch.float):
     state_dict = {
         "mean_module.constant":
         torch.tensor([-0.0066]),
         "covar_module.raw_outputscale":
         torch.tensor(1.0143),
         "covar_module.base_kernel.raw_lengthscale":
         torch.tensor([[-0.99]]),
         "covar_module.base_kernel.lengthscale_prior.concentration":
         torch.tensor(3.0),
         "covar_module.base_kernel.lengthscale_prior.rate":
         torch.tensor(6.0),
         "covar_module.outputscale_prior.concentration":
         torch.tensor(2.0),
         "covar_module.outputscale_prior.rate":
         torch.tensor(0.1500),
     }
     train_x = torch.linspace(0, 1, 10, device=self.device,
                              dtype=dtype).unsqueeze(-1)
     train_y = torch.sin(train_x * (2 * math.pi))
     noise = torch.tensor(NEI_NOISE, device=self.device, dtype=dtype)
     train_y += noise
     train_yvar = torch.full_like(train_y, 0.25**2)
     model = FixedNoiseGP(train_X=train_x,
                          train_Y=train_y,
                          train_Yvar=train_yvar)
     model.load_state_dict(state_dict)
     model.to(train_x)
     model.eval()
     return model
 def _setUp(self, double=False):
     dtype = torch.double if double else torch.float
     train_x = torch.linspace(0, 1, 10, device=self.device,
                              dtype=dtype).unsqueeze(-1)
     train_y = torch.sin(train_x * (2 * math.pi))
     train_yvar = torch.tensor(0.1**2, device=self.device)
     noise = torch.tensor(NOISE, device=self.device, dtype=dtype)
     self.train_x = train_x
     self.train_y = train_y + noise
     self.train_yvar = train_yvar
     self.bounds = torch.tensor([[0.0], [1.0]],
                                device=self.device,
                                dtype=dtype)
     model_st = SingleTaskGP(self.train_x, self.train_y)
     self.model_st = model_st.to(device=self.device, dtype=dtype)
     self.mll_st = ExactMarginalLogLikelihood(self.model_st.likelihood,
                                              self.model_st)
     with warnings.catch_warnings():
         warnings.filterwarnings("ignore", category=OptimizationWarning)
         self.mll_st = fit_gpytorch_model(self.mll_st,
                                          options={"maxiter": 5},
                                          max_retries=1)
     model_fn = FixedNoiseGP(self.train_x, self.train_y,
                             self.train_yvar.expand_as(self.train_y))
     self.model_fn = model_fn.to(device=self.device, dtype=dtype)
     self.mll_fn = ExactMarginalLogLikelihood(self.model_fn.likelihood,
                                              self.model_fn)
     with warnings.catch_warnings():
         warnings.filterwarnings("ignore", category=OptimizationWarning)
         self.mll_fn = fit_gpytorch_model(self.mll_fn,
                                          options={"maxiter": 5},
                                          max_retries=1)
Exemple #3
0
 def _setUp(self, double=False, cuda=False):
     device = torch.device("cuda") if cuda else torch.device("cpu")
     dtype = torch.double if double else torch.float
     train_x = torch.linspace(0, 1, 10, device=device, dtype=dtype).unsqueeze(-1)
     train_y = torch.sin(train_x * (2 * math.pi)).squeeze(-1)
     train_yvar = torch.tensor(0.1 ** 2, device=device)
     noise = torch.tensor(NOISE, device=device, dtype=dtype)
     self.train_x = train_x
     self.train_y = train_y + noise
     self.train_yvar = train_yvar
     self.bounds = torch.tensor([[0.0], [1.0]], device=device, dtype=dtype)
     model_st = SingleTaskGP(self.train_x, self.train_y)
     self.model_st = model_st.to(device=device, dtype=dtype)
     self.mll_st = ExactMarginalLogLikelihood(
         self.model_st.likelihood, self.model_st
     )
     self.mll_st = fit_gpytorch_model(self.mll_st, options={"maxiter": 5})
     model_fn = FixedNoiseGP(
         self.train_x, self.train_y, self.train_yvar.expand_as(self.train_y)
     )
     self.model_fn = model_fn.to(device=device, dtype=dtype)
     self.mll_fn = ExactMarginalLogLikelihood(
         self.model_fn.likelihood, self.model_fn
     )
     self.mll_fn = fit_gpytorch_model(self.mll_fn, options={"maxiter": 5})
Exemple #4
0
 def _setUp(self, double=False, cuda=False):
     device = torch.device("cuda") if cuda else torch.device("cpu")
     dtype = torch.double if double else torch.float
     train_x = torch.linspace(0, 1, 10, device=device, dtype=dtype).unsqueeze(-1)
     train_y = torch.sin(train_x * (2 * math.pi)).squeeze(-1)
     train_yvar = torch.tensor(0.1 ** 2, device=device)
     noise = torch.tensor(NOISE, device=device, dtype=dtype)
     self.train_x = train_x
     self.train_y = train_y + noise
     self.train_yvar = train_yvar
     self.bounds = torch.tensor([[0.0], [1.0]], device=device, dtype=dtype)
     model_st = SingleTaskGP(self.train_x, self.train_y)
     self.model_st = model_st.to(device=device, dtype=dtype)
     self.mll_st = ExactMarginalLogLikelihood(
         self.model_st.likelihood, self.model_st
     )
     self.mll_st = fit_gpytorch_model(self.mll_st, options={"maxiter": 5})
     model_fn = FixedNoiseGP(
         self.train_x, self.train_y, self.train_yvar.expand_as(self.train_y)
     )
     self.model_fn = model_fn.to(device=device, dtype=dtype)
     self.mll_fn = ExactMarginalLogLikelihood(
         self.model_fn.likelihood, self.model_fn
     )
     self.mll_fn = fit_gpytorch_model(self.mll_fn, options={"maxiter": 5})
Exemple #5
0
 def _get_model(self, cuda=False, dtype=torch.float):
     device = torch.device("cuda") if cuda else torch.device("cpu")
     state_dict = {
         "mean_module.constant": torch.tensor([-0.0066]),
         "covar_module.raw_outputscale": torch.tensor(1.0143),
         "covar_module.base_kernel.raw_lengthscale": torch.tensor([[-0.99]]),
         "covar_module.base_kernel.lengthscale_prior.concentration": torch.tensor(
             3.0
         ),
         "covar_module.base_kernel.lengthscale_prior.rate": torch.tensor(6.0),
         "covar_module.outputscale_prior.concentration": torch.tensor(2.0),
         "covar_module.outputscale_prior.rate": torch.tensor(0.1500),
     }
     train_x = torch.linspace(0, 1, 10, device=device, dtype=dtype)
     train_y = torch.sin(train_x * (2 * math.pi))
     noise = torch.tensor(NEI_NOISE, device=device, dtype=dtype)
     train_y += noise
     train_yvar = torch.full_like(train_y, 0.25 ** 2)
     train_x = train_x.view(-1, 1)
     model = FixedNoiseGP(train_X=train_x, train_Y=train_y, train_Yvar=train_yvar)
     model.load_state_dict(state_dict)
     model.to(train_x)
     model.eval()
     return model