def test_constrained_q_expected_hypervolume_improvement(self):
        for dtype in (torch.float, torch.double):
            tkwargs = {"device": self.device, "dtype": dtype}
            ref_point = [0.0, 0.0]
            pareto_Y = torch.tensor(
                [[4.0, 5.0], [5.0, 5.0], [8.5, 3.5], [8.5, 3.0], [9.0, 1.0]],
                **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=2)
            partitioning.update(Y=pareto_Y)

            # test q=1
            # the event shape is `b x q x m` = 1 x 1 x 2
            samples = torch.tensor([[[6.5, 4.5]]], **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            sampler = IIDNormalSampler(num_samples=1)
            X = torch.zeros(1, 1, **tkwargs)
            # test zero slack
            for eta in (1e-1, 1e-2):
                acqf = qExpectedHypervolumeImprovement(
                    model=mm,
                    ref_point=ref_point,
                    partitioning=partitioning,
                    sampler=sampler,
                    constraints=[lambda Z: torch.zeros_like(Z[..., -1])],
                    eta=eta,
                )
                res = acqf(X)
                self.assertAlmostEqual(res.item(), 0.5 * 1.5, places=4)
            # test feasible
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
                constraints=[lambda Z: -100.0 * torch.ones_like(Z[..., -1])],
                eta=1e-3,
            )
            res = acqf(X)
            self.assertAlmostEqual(res.item(), 1.5, places=4)
            # test infeasible
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
                constraints=[lambda Z: 100.0 * torch.ones_like(Z[..., -1])],
                eta=1e-3,
            )
            res = acqf(X)
            self.assertAlmostEqual(res.item(), 0.0, places=4)
    def test_expected_hypervolume_improvement(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            ref_point = [0.0, 0.0]
            tkwargs["dtype"] = dtype
            pareto_Y = torch.tensor(
                [[4.0, 5.0], [5.0, 5.0], [8.5, 3.5], [8.5, 3.0], [9.0, 1.0]],
                **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=2)
            # the event shape is `b x q x m` = 1 x 1 x 1
            mean = torch.zeros(1, 1, 2, **tkwargs)
            variance = torch.zeros(1, 1, 2, **tkwargs)
            mm = MockModel(MockPosterior(mean=mean, variance=variance))
            # test error if there is not pareto_Y initialized in partitioning
            with self.assertRaises(BotorchError):
                ExpectedHypervolumeImprovement(model=mm,
                                               ref_point=ref_point,
                                               partitioning=partitioning)
            partitioning.update(Y=pareto_Y)
            # test error if ref point has wrong shape
            with self.assertRaises(ValueError):
                ExpectedHypervolumeImprovement(model=mm,
                                               ref_point=ref_point[:1],
                                               partitioning=partitioning)

            with self.assertRaises(ValueError):
                # test error if no pareto_Y point is better than ref_point
                ExpectedHypervolumeImprovement(model=mm,
                                               ref_point=[10.0, 10.0],
                                               partitioning=partitioning)
            X = torch.zeros(1, 1, **tkwargs)
            # basic test
            acqf = ExpectedHypervolumeImprovement(model=mm,
                                                  ref_point=ref_point,
                                                  partitioning=partitioning)
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            # check ref point
            self.assertTrue(
                torch.equal(acqf.ref_point, torch.tensor(ref_point,
                                                         **tkwargs)))
            # check bounds
            self.assertTrue(hasattr(acqf, "cell_lower_bounds"))
            self.assertTrue(hasattr(acqf, "cell_upper_bounds"))
            # check cached indices
            expected_indices = torch.tensor([[0, 0], [0, 1], [1, 0], [1, 1]],
                                            dtype=torch.long,
                                            device=self.device)
            self.assertTrue(
                torch.equal(acqf._cross_product_indices, expected_indices))
Exemple #3
0
    def test_non_dominated_partitioning(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            tkwargs["dtype"] = dtype
            partitioning = NondominatedPartitioning(num_outcomes=2)
            # assert error is raised if pareto_Y has not been computed
            with self.assertRaises(BotorchError):
                partitioning.pareto_Y
            # test eps
            # no pareto_Y
            self.assertEqual(partitioning.eps, 1e-6)
            partitioning = NondominatedPartitioning(num_outcomes=2, eps=1.0)
            # eps set
            self.assertEqual(partitioning.eps, 1.0)
            # set pareto_Y
            partitioning = NondominatedPartitioning(num_outcomes=2)
            Y = torch.zeros(1, 2, **tkwargs)
            partitioning.update(Y=Y)
            self.assertEqual(partitioning.eps, 1e-6 if dtype == torch.float else 1e-8)

            # test _update_pareto_Y
            partitioning.Y = -Y
            self.assertFalse(partitioning._update_pareto_Y())

            # test m=2
            arange = torch.arange(3, 9, **tkwargs)
            pareto_Y = torch.stack([arange, 11 - arange], dim=-1)
            Y = torch.cat(
                [
                    pareto_Y,
                    torch.tensor(
                        [[8.0, 2.0], [7.0, 1.0]], **tkwargs
                    ),  # add some non-pareto elements
                ],
                dim=0,
            )
            partitioning = NondominatedPartitioning(num_outcomes=2, Y=Y)
            sorting = torch.argsort(pareto_Y[:, 0], descending=True)
            self.assertTrue(torch.equal(pareto_Y[sorting], partitioning.pareto_Y))
            ref_point = torch.zeros(2, **tkwargs)
            inf = float("inf")
            expected_cell_bounds = torch.tensor(
                [
                    [
                        [8.0, 0.0],
                        [7.0, 3.0],
                        [6.0, 4.0],
                        [5.0, 5.0],
                        [4.0, 6.0],
                        [3.0, 7.0],
                        [0.0, 8.0],
                    ],
                    [
                        [inf, inf],
                        [8.0, inf],
                        [7.0, inf],
                        [6.0, inf],
                        [5.0, inf],
                        [4.0, inf],
                        [3.0, inf],
                    ],
                ],
                **tkwargs,
            )
            cell_bounds = partitioning.get_hypercell_bounds(ref_point)
            self.assertTrue(torch.equal(cell_bounds, expected_cell_bounds))
            # test compute hypervolume
            hv = partitioning.compute_hypervolume(ref_point)
            self.assertEqual(hv.item(), 49.0)
            # test error when reference is not worse than all pareto_Y
            with self.assertRaises(ValueError):
                partitioning.compute_hypervolume(pareto_Y.max(dim=0).values)

            # test batched, m=2 case
            Y = torch.rand(3, 10, 2, **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=2, Y=Y)
            cell_bounds = partitioning.get_hypercell_bounds(ref_point)
            partitionings = []
            for i in range(Y.shape[0]):
                partitioning_i = NondominatedPartitioning(num_outcomes=2, Y=Y[i])
                partitionings.append(partitioning_i)
                # check pareto_Y
                pareto_set1 = {tuple(x) for x in partitioning_i.pareto_Y.tolist()}
                pareto_set2 = {tuple(x) for x in partitioning.pareto_Y[i].tolist()}
                self.assertEqual(pareto_set1, pareto_set2)
                expected_cell_bounds_i = partitioning_i.get_hypercell_bounds(ref_point)
                # remove padding
                no_padding_cell_bounds_i = cell_bounds[:, i][
                    :, ((cell_bounds[1, i] - cell_bounds[0, i]) != 0).all(dim=-1)
                ]
                self.assertTrue(
                    torch.equal(expected_cell_bounds_i, no_padding_cell_bounds_i)
                )

            # test batch ref point
            cell_bounds2 = partitioning.get_hypercell_bounds(
                ref_point.unsqueeze(0).expand(3, 2)
            )
            self.assertTrue(torch.equal(cell_bounds, cell_bounds2))

            # test improper batch shape
            with self.assertRaises(BotorchTensorDimensionError):
                partitioning.get_hypercell_bounds(ref_point.unsqueeze(0).expand(4, 2))

            # test improper Y shape (too many batch dims)
            with self.assertRaises(NotImplementedError):
                NondominatedPartitioning(num_outcomes=2, Y=Y.unsqueeze(0))

            # test batched compute_hypervolume, m=2
            hvs = partitioning.compute_hypervolume(ref_point)
            hvs_non_batch = torch.stack(
                [
                    partitioning_i.compute_hypervolume(ref_point)
                    for partitioning_i in partitionings
                ],
                dim=0,
            )
            self.assertTrue(torch.allclose(hvs, hvs_non_batch))

            # test batched m>2
            with self.assertRaises(NotImplementedError):
                NondominatedPartitioning(
                    num_outcomes=3, Y=torch.cat([Y, Y[..., :1]], dim=-1)
                )

            # test error with partition_non_dominated_space_2d for m=3
            partitioning = NondominatedPartitioning(
                num_outcomes=3, Y=torch.zeros(1, 3, **tkwargs)
            )
            with self.assertRaises(BotorchTensorDimensionError):
                partitioning.partition_non_dominated_space_2d()
            # test m=3
            pareto_Y = torch.tensor(
                [[1.0, 6.0, 8.0], [2.0, 4.0, 10.0], [3.0, 5.0, 7.0]], **tkwargs
            )
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            sorting = torch.argsort(pareto_Y[:, 0], descending=True)
            self.assertTrue(torch.equal(pareto_Y[sorting], partitioning.pareto_Y))
            ref_point = torch.tensor([-1.0, -2.0, -3.0], **tkwargs)
            expected_cell_bounds = torch.tensor(
                [
                    [
                        [1.0, 4.0, 7.0],
                        [-1.0, -2.0, 10.0],
                        [-1.0, 4.0, 8.0],
                        [1.0, -2.0, 10.0],
                        [1.0, 4.0, 8.0],
                        [-1.0, 6.0, -3.0],
                        [1.0, 5.0, -3.0],
                        [-1.0, 5.0, 8.0],
                        [2.0, -2.0, 7.0],
                        [2.0, 4.0, 7.0],
                        [3.0, -2.0, -3.0],
                        [2.0, -2.0, 8.0],
                        [2.0, 5.0, -3.0],
                    ],
                    [
                        [2.0, 5.0, 8.0],
                        [1.0, 4.0, inf],
                        [1.0, 5.0, inf],
                        [2.0, 4.0, inf],
                        [2.0, 5.0, inf],
                        [1.0, inf, 8.0],
                        [2.0, inf, 8.0],
                        [2.0, inf, inf],
                        [3.0, 4.0, 8.0],
                        [3.0, 5.0, 8.0],
                        [inf, 5.0, 8.0],
                        [inf, 5.0, inf],
                        [inf, inf, inf],
                    ],
                ],
                **tkwargs,
            )
            cell_bounds = partitioning.get_hypercell_bounds(ref_point)
            # cell bounds can have different order
            num_matches = (
                (cell_bounds.unsqueeze(0) == expected_cell_bounds.unsqueeze(1))
                .all(dim=-1)
                .any(dim=0)
                .sum()
            )
            self.assertTrue(num_matches, 9)
            # test compute hypervolume
            hv = partitioning.compute_hypervolume(ref_point)
            self.assertEqual(hv.item(), 358.0)
    def test_q_expected_hypervolume_improvement(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            ref_point = [0.0, 0.0]
            tkwargs["dtype"] = dtype
            pareto_Y = torch.tensor(
                [[4.0, 5.0], [5.0, 5.0], [8.5, 3.5], [8.5, 3.0], [9.0, 1.0]],
                **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=2)
            # the event shape is `b x q x m` = 1 x 1 x 2
            samples = torch.zeros(1, 1, 2, **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            # test error if there is not pareto_Y initialized in partitioning
            with self.assertRaises(BotorchError):
                qExpectedHypervolumeImprovement(model=mm,
                                                ref_point=ref_point,
                                                partitioning=partitioning)
            partitioning.update(Y=pareto_Y)
            # test error if ref point has wrong shape
            with self.assertRaises(ValueError):
                qExpectedHypervolumeImprovement(model=mm,
                                                ref_point=ref_point[:1],
                                                partitioning=partitioning)

            X = torch.zeros(1, 1, **tkwargs)
            # basic test
            sampler = IIDNormalSampler(num_samples=1)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            # check ref point
            self.assertTrue(
                torch.equal(acqf.ref_point, torch.tensor(ref_point,
                                                         **tkwargs)))
            # check cached indices
            self.assertTrue(hasattr(acqf, "q_subset_indices"))
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0]], device=self.device),
                ))

            # test q=2
            X2 = torch.zeros(2, 1, **tkwargs)
            samples2 = torch.zeros(1, 2, 2, **tkwargs)
            mm2 = MockModel(MockPosterior(samples=samples2))
            acqf.model = mm2
            res = acqf(X2)
            self.assertEqual(res.item(), 0.0)
            # check cached indices
            self.assertTrue(hasattr(acqf, "q_subset_indices"))
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0], [1]], device=self.device),
                ))
            self.assertIn("q_choose_2", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_2"],
                    torch.tensor([[0, 1]], device=self.device),
                ))
            self.assertNotIn("q_choose_3", acqf.q_subset_indices)
            # now back to 1 and sure all caches were cleared
            acqf.model = mm
            res = acqf(X)
            self.assertNotIn("q_choose_2", acqf.q_subset_indices)
            self.assertIn("q_choose_1", acqf.q_subset_indices)
            self.assertTrue(
                torch.equal(
                    acqf.q_subset_indices["q_choose_1"],
                    torch.tensor([[0]], device=self.device),
                ))

            X = torch.zeros(1, 1, **tkwargs)
            samples = torch.zeros(1, 1, 2, **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            # basic test, no resample
            sampler = IIDNormalSampler(num_samples=2, seed=12345)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            res = acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, no resample
            sampler = SobolQMCNormalSampler(num_samples=2)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertTrue(torch.equal(acqf.sampler.base_samples, bs))

            # basic test, qmc, resample
            sampler = SobolQMCNormalSampler(num_samples=2, resample=True)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)
            self.assertEqual(acqf.sampler.base_samples.shape,
                             torch.Size([2, 1, 1, 2]))
            bs = acqf.sampler.base_samples.clone()
            acqf(X)
            self.assertFalse(torch.equal(acqf.sampler.base_samples, bs))

            # basic test for X_pending and warning
            acqf.set_X_pending()
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(None)
            self.assertIsNone(acqf.X_pending)
            acqf.set_X_pending(X)
            self.assertEqual(acqf.X_pending, X)
            res = acqf(X)
            X2 = torch.zeros(1, 1, 1, requires_grad=True, **tkwargs)
            with warnings.catch_warnings(
                    record=True) as ws, settings.debug(True):
                acqf.set_X_pending(X2)
                self.assertEqual(acqf.X_pending, X2)
                self.assertEqual(len(ws), 1)
                self.assertTrue(issubclass(ws[-1].category, BotorchWarning))

            # test objective
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
                objective=IdentityMCMultiOutputObjective(),
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # Test that the hypervolume improvement is correct for given sample
            # test q = 1
            X = torch.zeros(1, 1, **tkwargs)
            # basic test
            samples = torch.tensor([[[6.5, 4.5]]], **tkwargs)
            mm = MockModel(MockPosterior(samples=samples))
            sampler = IIDNormalSampler(num_samples=1)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 1.5)
            # test q = 1, does not contribute
            samples = torch.tensor([0.0, 1.0], **tkwargs).view(1, 1, 2)
            sampler = IIDNormalSampler(1)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test q = 2, both points contribute
            X = torch.zeros(2, 1, **tkwargs)
            samples = torch.tensor([[6.5, 4.5], [7.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 1.75)

            # test q = 2, only 1 point contributes
            samples = torch.tensor([[6.5, 4.5], [6.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 1.5)

            # test q = 2, neither contributes
            samples = torch.tensor([[2.0, 2.0], [0.0, 0.1]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test q = 2, test point better than current best second objective
            samples = torch.tensor([[6.5, 4.5], [6.0, 6.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf.model = mm
            res = acqf(X)
            self.assertEqual(res.item(), 8.0)

            # test q = 2, test point better than current-best first objective
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 2.0)
            # test q = 3, all contribute
            X = torch.zeros(3, 1, **tkwargs)
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0], [7.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 2.25)
            # test q = 3, not all contribute
            samples = torch.tensor([[6.5, 4.5], [9.0, 2.0], [7.0, 5.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 3.5)
            # test q = 3, none contribute
            samples = torch.tensor([[0.0, 4.5], [1.0, 2.0], [3.0, 0.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test m = 3, q=1
            pareto_Y = torch.tensor(
                [[4.0, 2.0, 3.0], [3.0, 5.0, 1.0], [2.0, 4.0, 2.0],
                 [1.0, 3.0, 4.0]],
                **tkwargs,
            )
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            samples = torch.tensor([[1.0, 2.0, 6.0]], **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            ref_point = [-1.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            X = torch.zeros(1, 2, **tkwargs)
            res = acqf(X)
            self.assertEqual(res.item(), 12.0)

            # change reference point
            ref_point = [0.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 4.0)

            # test m = 3, no contribution
            ref_point = [1.0] * 3
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            res = acqf(X)
            self.assertEqual(res.item(), 0.0)

            # test m = 3, q = 2
            pareto_Y = torch.tensor(
                [[4.0, 2.0, 3.0], [3.0, 5.0, 1.0], [2.0, 4.0, 2.0]], **tkwargs)
            samples = torch.tensor([[1.0, 2.0, 6.0], [1.0, 3.0, 4.0]],
                                   **tkwargs).unsqueeze(0)
            mm = MockModel(MockPosterior(samples=samples))
            ref_point = [-1.0] * 3
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            acqf = qExpectedHypervolumeImprovement(
                model=mm,
                ref_point=ref_point,
                partitioning=partitioning,
                sampler=sampler,
            )
            X = torch.zeros(2, 2, **tkwargs)
            res = acqf(X)
            self.assertEqual(res.item(), 22.0)
Exemple #5
0
def qehvi_candidates_func(
    train_x: "torch.Tensor",
    train_obj: "torch.Tensor",
    train_con: Optional["torch.Tensor"],
    bounds: "torch.Tensor",
) -> "torch.Tensor":
    """Quasi MC-based batch Expected Hypervolume Improvement (qEHVI).

    The default value of ``candidates_func`` in :class:`~optuna.integration.BoTorchSampler`
    with multi-objective optimization when the number of objectives is three or less.

    .. seealso::
        :func:`~optuna.integration.botorch.qei_candidates_func` for argument and return value
        descriptions.
    """

    n_objectives = train_obj.size(-1)

    if train_con is not None:
        train_y = torch.cat([train_obj, train_con], dim=-1)

        is_feas = (train_con <= 0).all(dim=-1)
        train_obj_feas = train_obj[is_feas]

        constraints = []
        n_constraints = train_con.size(1)

        for i in range(n_constraints):
            constraints.append(lambda Z, i=i: Z[..., -n_constraints + i])
        additional_qehvi_kwargs = {
            "objective":
            IdentityMCMultiOutputObjective(outcomes=list(range(n_objectives))),
            "constraints":
            constraints,
        }
    else:
        train_y = train_obj

        train_obj_feas = train_obj

        additional_qehvi_kwargs = {}

    train_x = normalize(train_x, bounds=bounds)

    model = SingleTaskGP(train_x,
                         train_y,
                         outcome_transform=Standardize(m=train_y.shape[-1]))
    mll = ExactMarginalLogLikelihood(model.likelihood, model)
    fit_gpytorch_model(mll)

    # Approximate box decomposition similar to Ax when the number of objectives is large.
    # https://github.com/facebook/Ax/blob/master/ax/models/torch/botorch_moo_defaults
    if n_objectives > 2:
        alpha = 10**(-8 + n_objectives)
    else:
        alpha = 0.0
    partitioning = NondominatedPartitioning(num_outcomes=n_objectives,
                                            Y=train_obj_feas,
                                            alpha=alpha)

    ref_point = train_obj.min(dim=0).values - 1e-8
    ref_point_list = ref_point.tolist()

    acqf = qExpectedHypervolumeImprovement(
        model=model,
        ref_point=ref_point_list,
        partitioning=partitioning,
        sampler=SobolQMCNormalSampler(num_samples=256),
        **additional_qehvi_kwargs,
    )

    standard_bounds = torch.zeros_like(bounds)
    standard_bounds[1] = 1

    candidates, _ = optimize_acqf(
        acq_function=acqf,
        bounds=standard_bounds,
        q=1,
        num_restarts=20,
        raw_samples=1024,
        options={
            "batch_limit": 5,
            "maxiter": 200,
            "nonnegative": True
        },
        sequential=True,
    )

    candidates = unnormalize(candidates.detach(), bounds=bounds)

    return candidates
def evaluate(mth, run_i, seed):
    print(mth, run_i, seed, '===== start =====', flush=True)

    def objective_function(x: torch.Tensor):
        # Caution: unnormalize and maximize
        x = unnormalize(x, bounds=problem_bounds)
        x = x.cpu().numpy().astype(np.float64)  # caution
        res = problem.evaluate(x)
        res['objs'] = [-y for y in res['objs']]
        return res  # Caution: negative values imply feasibility in botorch

    hv_diffs = []
    time_list = []
    global_start_time = time.time()

    # random seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # call helper functions to generate initial training data and initialize model
    train_x, train_obj, train_con = generate_initial_data(
        initial_runs, objective_function, time_list, global_start_time)
    # fix bug: find feasible
    real_initial_runs = initial_runs
    while real_initial_runs < max_runs:
        # compute feasible observations
        is_feas = (train_con <= 0).all(dim=-1)
        # compute points that are better than the known reference point
        better_than_ref = (train_obj > problem.ref_point).all(dim=-1)
        if (is_feas & better_than_ref).any():
            break
        train_x, train_obj, train_con = expand_initial_data(
            train_x, train_obj, train_con, objective_function, time_list,
            global_start_time)
        real_initial_runs += 1
        print('=== Expand initial data to find feasible. Iter =',
              real_initial_runs)
    mll, model = initialize_model(train_x, train_obj, train_con)

    # for plot
    X_init = train_x.cpu().numpy().astype(np.float64)
    Y_init = -1 * train_obj.cpu().numpy().astype(np.float64)
    # calculate hypervolume of init data
    for i in range(real_initial_runs):
        train_obj_i = train_obj[:i + 1]
        train_con_i = train_con[:i + 1]
        # compute pareto front
        is_feas_i = (train_con_i <= 0).all(dim=-1)
        feas_train_obj_i = train_obj_i[is_feas_i]
        pareto_mask = is_non_dominated(feas_train_obj_i)
        pareto_y = feas_train_obj_i[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

    # run (max_runs - real_initial_runs) rounds of BayesOpt after the initial random batch
    for iteration in range(real_initial_runs + 1, max_runs + 1):
        t0 = time.time()
        try:
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # compute feasible observations
            is_feas = (train_con <= 0).all(dim=-1)
            # compute points that are better than the known reference point
            better_than_ref = (train_obj > problem.ref_point).all(dim=-1)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs,
                # use observations that are better than the specified reference point and feasible
                Y=train_obj[better_than_ref & is_feas],
            )
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
                # define an objective that specifies which outcomes are the objectives
                objective=IdentityMCMultiOutputObjective(
                    outcomes=list(range(problem.num_objs))),
                # specify that the constraint is on the last outcome
                constraints=constraint_callable_list(
                    problem.num_constraints, num_objs=problem.num_objs),
            )
            # optimize and get new observation
            new_x, new_obj, new_con = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
        except Exception as e:  # handle numeric problem
            step = 2
            print(
                '===== Exception in optimization loop, restart with 1/%d of training data: %s'
                % (step, str(e)))
            if refit == 1:
                mll, model = initialize_model(train_x[::step],
                                              train_obj[::step],
                                              train_con[::step])
            else:
                mll, model = initialize_model(
                    train_x[::step],
                    train_obj[::step],
                    train_con[::step],
                    model.state_dict(),
                )
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # compute feasible observations
            is_feas = (train_con[::step] <= 0).all(dim=-1)
            # compute points that are better than the known reference point
            better_than_ref = (train_obj[::step] > problem.ref_point).all(
                dim=-1)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs,
                # use observations that are better than the specified reference point and feasible
                Y=train_obj[::step][better_than_ref & is_feas],
            )
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
                # define an objective that specifies which outcomes are the objectives
                objective=IdentityMCMultiOutputObjective(
                    outcomes=list(range(problem.num_objs))),
                # specify that the constraint is on the last outcome
                constraints=constraint_callable_list(
                    problem.num_constraints, num_objs=problem.num_objs),
            )
            # optimize and get new observation
            new_x, new_obj, new_con = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
            assert len(time_list) == iteration

        # update training points
        train_x = torch.cat([train_x, new_x])
        train_obj = torch.cat([train_obj, new_obj])
        train_con = torch.cat([train_con, new_con])

        # update progress
        # compute pareto front
        is_feas = (train_con <= 0).all(dim=-1)
        feas_train_obj = train_obj[is_feas]
        pareto_mask = is_non_dominated(feas_train_obj)
        pareto_y = feas_train_obj[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

        # reinitialize the models so they are ready for fitting on next iteration
        # use the current state dict to speed up fitting
        # Note: they find improved performance from not warm starting the model hyperparameters
        # using the hyperparameters from the previous iteration
        if refit == 1:
            mll, model = initialize_model(train_x, train_obj, train_con)
        else:
            mll, model = initialize_model(
                train_x,
                train_obj,
                train_con,
                model.state_dict(),
            )

        t1 = time.time()
        print(
            "Iter %d: x=%s, perf=%s, con=%s, hv_diff=%f, time=%.2f, global_time=%.2f"
            % (iteration, unnormalize(new_x, bounds=problem_bounds), -new_obj,
               new_con, hv_diff, t1 - t0, time_list[-1]),
            flush=True)

    # compute pareto front
    is_feas = (train_con <= 0).all(dim=-1)
    feas_train_obj = train_obj[is_feas]
    pareto_mask = is_non_dominated(feas_train_obj)
    pareto_y = feas_train_obj[pareto_mask]
    pf = -1 * pareto_y.cpu().numpy().astype(np.float64)
    # Save result
    X = unnormalize(train_x, bounds=problem_bounds).cpu().numpy().astype(
        np.float64)  # caution
    train_obj[~is_feas] = -INFEASIBLE_OBJ_VALUE  # set infeasible
    Y = -1 * train_obj.cpu().numpy().astype(np.float64)

    # plot for debugging
    if plot_mode == 1:
        plot_pf(problem, problem_str, mth, pf, Y_init)

    return hv_diffs, pf, X, Y, time_list
Exemple #7
0
def get_acquisition_function(
    acquisition_function_name: str,
    model: Model,
    objective: MCAcquisitionObjective,
    X_observed: Tensor,
    X_pending: Optional[Tensor] = None,
    constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
    mc_samples: int = 500,
    qmc: bool = True,
    seed: Optional[int] = None,
    **kwargs,
) -> monte_carlo.MCAcquisitionFunction:
    r"""Convenience function for initializing botorch acquisition functions.

    Args:
        acquisition_function_name: Name of the acquisition function.
        model: A fitted model.
        objective: A MCAcquisitionObjective.
        X_observed: A `m1 x d`-dim Tensor of `m1` design points that have
            already been observed.
        X_pending: A `m2 x d`-dim Tensor of `m2` design points whose evaluation
            is pending.
        constraints: A list of callables, each mapping a Tensor of dimension
            `sample_shape x batch-shape x q x m` to a Tensor of dimension
            `sample_shape x batch-shape x q`, where negative values imply
            feasibility. Used when constraint_transforms are not passed
            as part of the objective.
        mc_samples: The number of samples to use for (q)MC evaluation of the
            acquisition function.
        qmc: If True, use quasi-Monte-Carlo sampling (instead of iid).
        seed: If provided, perform deterministic optimization (i.e. the
            function to optimize is fixed and not stochastic).

    Returns:
        The requested acquisition function.

    Example:
        >>> model = SingleTaskGP(train_X, train_Y)
        >>> obj = LinearMCObjective(weights=torch.tensor([1.0, 2.0]))
        >>> acqf = get_acquisition_function("qEI", model, obj, train_X)
    """
    # initialize the sampler
    if qmc:
        sampler = SobolQMCNormalSampler(num_samples=mc_samples, seed=seed)
    else:
        sampler = IIDNormalSampler(num_samples=mc_samples, seed=seed)
    # instantiate and return the requested acquisition function
    if acquisition_function_name == "qEI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qExpectedImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    elif acquisition_function_name == "qPI":
        best_f = objective(model.posterior(X_observed).mean).max().item()
        return monte_carlo.qProbabilityOfImprovement(
            model=model,
            best_f=best_f,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            tau=kwargs.get("tau", 1e-3),
        )
    elif acquisition_function_name == "qNEI":
        return monte_carlo.qNoisyExpectedImprovement(
            model=model,
            X_baseline=X_observed,
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
            prune_baseline=kwargs.get("prune_baseline", False),
        )
    elif acquisition_function_name == "qSR":
        return monte_carlo.qSimpleRegret(
            model=model, sampler=sampler, objective=objective, X_pending=X_pending
        )
    elif acquisition_function_name == "qUCB":
        if "beta" not in kwargs:
            raise ValueError("`beta` must be specified in kwargs for qUCB.")
        return monte_carlo.qUpperConfidenceBound(
            model=model,
            beta=kwargs["beta"],
            sampler=sampler,
            objective=objective,
            X_pending=X_pending,
        )
    elif acquisition_function_name == "qEHVI":
        # pyre-fixme [16]: `Model` has no attribute `train_targets`
        if "ref_point" not in kwargs:
            raise ValueError("`ref_point` must be specified in kwargs for qEHVI")
        if "Y" not in kwargs:
            raise ValueError("`Y` must be specified in kwargs for qEHVI")
        ref_point = kwargs["ref_point"]
        Y = kwargs.get("Y")
        # get feasible points
        if constraints is not None:
            feas = torch.stack([c(Y) <= 0 for c in constraints], dim=-1).all(dim=-1)
            Y = Y[feas]
        obj = objective(Y)
        partitioning = NondominatedPartitioning(
            num_outcomes=obj.shape[-1], Y=obj, alpha=kwargs.get("alpha", 0.0)
        )
        return moo_monte_carlo.qExpectedHypervolumeImprovement(
            model=model,
            ref_point=ref_point,
            partitioning=partitioning,
            sampler=sampler,
            objective=objective,
            constraints=constraints,
        )
    raise NotImplementedError(
        f"Unknown acquisition function {acquisition_function_name}"
    )
def evaluate(mth, run_i, seed):
    print(mth, run_i, seed, '===== start =====', flush=True)

    def objective_function(x: torch.Tensor):
        # Caution: unnormalize and maximize
        x = unnormalize(x, bounds=problem_bounds)
        x = x.cpu().numpy().astype(np.float64)  # caution
        res = problem.evaluate(x)
        objs = [-y for y in res['objs']]
        return objs

    hv_diffs = []
    time_list = []
    global_start_time = time.time()

    # random seed
    np.random.seed(seed)
    torch.manual_seed(seed)

    # call helper functions to generate initial training data and initialize model
    train_x, train_obj = generate_initial_data(initial_runs,
                                               objective_function, time_list,
                                               global_start_time)
    mll, model = initialize_model(train_x, train_obj)

    # for plot
    X_init = train_x.cpu().numpy().astype(np.float64)
    Y_init = -1 * train_obj.cpu().numpy().astype(np.float64)
    # calculate hypervolume of init data
    for i in range(initial_runs):
        train_obj_i = train_obj[:i + 1]
        # compute pareto front
        pareto_mask = is_non_dominated(train_obj_i)
        pareto_y = train_obj_i[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

    # run (max_runs - initial_runs) rounds of BayesOpt after the initial random batch
    for iteration in range(initial_runs + 1, max_runs + 1):
        t0 = time.time()
        try:
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs, Y=train_obj)
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
            )
            # optimize and get new observation
            new_x, new_obj = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
        except Exception as e:
            step = 2
            print(
                '===== Exception in optimization loop, restart with 1/%d of training data: %s'
                % (step, str(e)))
            if refit == 1:
                mll, model = initialize_model(train_x[::step],
                                              train_obj[::step])
            else:
                mll, model = initialize_model(
                    train_x[::step],
                    train_obj[::step],
                    model.state_dict(),
                )
            # fit the models
            fit_gpytorch_model(mll)

            # define the qEHVI acquisition modules using a QMC sampler
            sampler = SobolQMCNormalSampler(num_samples=MC_SAMPLES)
            # partition non-dominated space into disjoint rectangles
            partitioning = NondominatedPartitioning(
                num_outcomes=problem.num_objs, Y=train_obj[::step])
            qEHVI = qExpectedHypervolumeImprovement(
                model=model,
                ref_point=problem.ref_point.tolist(
                ),  # use known reference point
                partitioning=partitioning,
                sampler=sampler,
            )
            # optimize and get new observation
            new_x, new_obj = optimize_acqf_and_get_observation(
                qEHVI, objective_function, time_list, global_start_time)
            assert len(time_list) == iteration

        # update training points
        train_x = torch.cat([train_x, new_x])
        train_obj = torch.cat([train_obj, new_obj])

        # update progress
        # compute pareto front
        pareto_mask = is_non_dominated(train_obj)
        pareto_y = train_obj[pareto_mask]
        # compute hypervolume
        volume = hv.compute(pareto_y)
        hv_diff = problem.max_hv - volume
        hv_diffs.append(hv_diff)

        # reinitialize the models so they are ready for fitting on next iteration
        # use the current state dict to speed up fitting
        # Note: they find improved performance from not warm starting the model hyperparameters
        # using the hyperparameters from the previous iteration
        if refit == 1:
            mll, model = initialize_model(train_x, train_obj)
        else:
            mll, model = initialize_model(
                train_x,
                train_obj,
                model.state_dict(),
            )

        t1 = time.time()
        print(
            "Iter %d: x=%s, perf=%s, hv_diff=%f, time=%.2f, global_time=%.2f" %
            (iteration, unnormalize(new_x, bounds=problem_bounds), -new_obj,
             hv_diff, t1 - t0, time_list[-1]),
            flush=True)

    # Save result
    X = unnormalize(train_x, bounds=problem_bounds).cpu().numpy().astype(
        np.float64)  # caution
    Y = -1 * train_obj.cpu().numpy().astype(np.float64)
    # compute pareto front
    pareto_mask = is_non_dominated(train_obj)
    pareto_y = train_obj[pareto_mask]
    pf = -1 * pareto_y.cpu().numpy().astype(np.float64)

    # plot for debugging
    if plot_mode == 1:
        plot_pf(problem, problem_str, mth, pf, Y_init)

    return hv_diffs, pf, X, Y, time_list
    def test_non_dominated_partitioning(self):
        tkwargs = {"device": self.device}
        for dtype in (torch.float, torch.double):
            tkwargs["dtype"] = dtype
            partitioning = NondominatedPartitioning(num_outcomes=2)
            # assert error is raised if pareto_Y has not been computed
            with self.assertRaises(BotorchError):
                partitioning.pareto_Y
            # test eps
            # no pareto_Y
            self.assertEqual(partitioning.eps, 1e-6)
            partitioning = NondominatedPartitioning(num_outcomes=2, eps=1.0)
            # eps set
            self.assertEqual(partitioning.eps, 1.0)
            # set pareto_Y
            partitioning = NondominatedPartitioning(num_outcomes=2)
            Y = torch.zeros(1, 2, **tkwargs)
            partitioning.update(Y=Y)
            self.assertEqual(partitioning.eps,
                             1e-6 if dtype == torch.float else 1e-8)

            # test _update_pareto_Y
            partitioning.Y = -Y
            self.assertFalse(partitioning._update_pareto_Y())

            # test m=2
            arange = torch.arange(3, 9, **tkwargs)
            pareto_Y = torch.stack([arange, 11 - arange], dim=-1)
            Y = torch.cat(
                [
                    pareto_Y,
                    torch.tensor([[8.0, 2.0], [7.0, 1.0]], **
                                 tkwargs),  # add some non-pareto elements
                ],
                dim=0,
            )
            partitioning = NondominatedPartitioning(num_outcomes=2, Y=Y)
            sorting = torch.argsort(pareto_Y[:, 0], descending=True)
            self.assertTrue(
                torch.equal(pareto_Y[sorting], partitioning.pareto_Y))
            ref_point = torch.zeros(2, **tkwargs)
            inf = float("inf")
            expected_cell_bounds = torch.tensor([
                [
                    [8.0, 0.0],
                    [7.0, 3.0],
                    [6.0, 4.0],
                    [5.0, 5.0],
                    [4.0, 6.0],
                    [3.0, 7.0],
                    [0.0, 8.0],
                ],
                [
                    [inf, inf],
                    [8.0, inf],
                    [7.0, inf],
                    [6.0, inf],
                    [5.0, inf],
                    [4.0, inf],
                    [3.0, inf],
                ],
            ], **tkwargs)
            cell_bounds = partitioning.get_hypercell_bounds(ref_point)
            self.assertTrue(torch.equal(cell_bounds, expected_cell_bounds))
            # test compute hypervolume
            hv = partitioning.compute_hypervolume(ref_point)
            self.assertEqual(hv, 49.0)
            # test error when reference is not worse than all pareto_Y
            with self.assertRaises(ValueError):
                partitioning.compute_hypervolume(pareto_Y.max(dim=0).values)

            # test error with partition_non_dominated_space_2d for m=3
            partitioning = NondominatedPartitioning(num_outcomes=3,
                                                    Y=torch.zeros(
                                                        1, 3, **tkwargs))
            with self.assertRaises(BotorchTensorDimensionError):
                partitioning.partition_non_dominated_space_2d()
            # test m=3
            pareto_Y = torch.tensor(
                [[1.0, 6.0, 8.0], [2.0, 4.0, 10.0], [3.0, 5.0, 7.0]],
                **tkwargs)
            partitioning = NondominatedPartitioning(num_outcomes=3, Y=pareto_Y)
            sorting = torch.argsort(pareto_Y[:, 0], descending=True)
            self.assertTrue(
                torch.equal(pareto_Y[sorting], partitioning.pareto_Y))
            ref_point = torch.tensor([-1.0, -2.0, -3.0], **tkwargs)
            expected_cell_bounds = torch.tensor([
                [
                    [1.0, 4.0, 7.0],
                    [-1.0, -2.0, 10.0],
                    [-1.0, 4.0, 8.0],
                    [1.0, -2.0, 10.0],
                    [1.0, 4.0, 8.0],
                    [-1.0, 6.0, -3.0],
                    [1.0, 5.0, -3.0],
                    [-1.0, 5.0, 8.0],
                    [2.0, -2.0, 7.0],
                    [2.0, 4.0, 7.0],
                    [3.0, -2.0, -3.0],
                    [2.0, -2.0, 8.0],
                    [2.0, 5.0, -3.0],
                ],
                [
                    [2.0, 5.0, 8.0],
                    [1.0, 4.0, inf],
                    [1.0, 5.0, inf],
                    [2.0, 4.0, inf],
                    [2.0, 5.0, inf],
                    [1.0, inf, 8.0],
                    [2.0, inf, 8.0],
                    [2.0, inf, inf],
                    [3.0, 4.0, 8.0],
                    [3.0, 5.0, 8.0],
                    [inf, 5.0, 8.0],
                    [inf, 5.0, inf],
                    [inf, inf, inf],
                ],
            ], **tkwargs)
            cell_bounds = partitioning.get_hypercell_bounds(ref_point)
            # cell bounds can have different order
            num_matches = ((cell_bounds.unsqueeze(0) == expected_cell_bounds.
                            unsqueeze(1)).all(dim=-1).any(dim=0).sum())
            self.assertTrue(num_matches, 9)
            # test compute hypervolume
            hv = partitioning.compute_hypervolume(ref_point)
            self.assertEqual(hv, 358.0)
Exemple #10
0
    def __init__(
        self,
        model: Model,
        ref_point: List[float],
        partitioning: NondominatedPartitioning,
        sampler: Optional[MCSampler] = None,
        objective: Optional[MCMultiOutputObjective] = None,
        constraints: Optional[List[Callable[[Tensor], Tensor]]] = None,
        X_pending: Optional[Tensor] = None,
        eta: float = 1e-3,
    ) -> None:
        r"""q-Expected Hypervolume Improvement supporting m>=2 outcomes.

        See [Daulton2020qehvi]_ for details.

        Example:
            >>> model = SingleTaskGP(train_X, train_Y)
            >>> ref_point = [0.0, 0.0]
            >>> qEHVI = qExpectedHypervolumeImprovement(model, ref_point, partitioning)
            >>> qehvi = qEHVI(test_X)

        Args:
            model: A fitted model.
            ref_point: A list with `m` elements representing the reference point (in the
                outcome space) w.r.t. to which compute the hypervolume. This is a
                reference point for the objective values (i.e. after applying
                `objective` to the samples).
            partitioning: A `NondominatedPartitioning` module that provides the non-
                dominated front and a partitioning of the non-dominated space in hyper-
                rectangles. If constraints are present, this partitioning must only
                include feasible points.
            sampler: The sampler used to draw base samples. Defaults to
                `SobolQMCNormalSampler(num_samples=512, collapse_batch_dims=True)`.
            objective: The MCMultiOutputObjective under which the samples are evaluated.
                Defaults to `IdentityMultiOutputObjective()`.
            constraints: A list of callables, each mapping a Tensor of dimension
                `sample_shape x batch-shape x q x m` to a Tensor of dimension
                `sample_shape x batch-shape x q`, where negative values imply
                feasibility. The acqusition function will compute expected feasible
                hypervolume.
            X_pending: A `batch_shape x m x d`-dim Tensor of `m` design points that have
                points that have been submitted for function evaluation but have not yet
                been evaluated. Concatenated into `X` upon forward call. Copied and set
                to have no gradient.
            eta: The temperature parameter for the sigmoid function used for the
                differentiable approximation of the constraints.
        """
        if len(ref_point) != partitioning.num_outcomes:
            raise ValueError(
                "The length of the reference point must match the number of outcomes. "
                f"Got ref_point with {len(ref_point)} elements, but expected "
                f"{partitioning.num_outcomes}.")
        ref_point = torch.tensor(
            ref_point,
            dtype=partitioning.pareto_Y.dtype,
            device=partitioning.pareto_Y.device,
        )
        super().__init__(model=model,
                         sampler=sampler,
                         objective=objective,
                         X_pending=X_pending)
        self.constraints = constraints
        self.eta = eta
        self.register_buffer("ref_point", ref_point)
        cell_bounds = partitioning.get_hypercell_bounds(
            ref_point=self.ref_point)
        self.register_buffer("cell_lower_bounds", cell_bounds[0])
        self.register_buffer("cell_upper_bounds", cell_bounds[1])
        self.q = -1
        self.q_subset_indices = BufferDict()