Exemple #1
0
def test(ssd, data, default_boxes):
    """ Execute test on one image
        then perform NMS algorithm
        then rescale boxes back to normal size

    Args:
        ssd: trained SSD model
        img: Torch array of shape (1, 3, H, W)
        default_boxes: Torch array of shape (num_default, 4)

    Returns:
        img: numpy array of (3, H, W)
        all_boxes: final boxes, numpy array of (num_boxes, 4)
        all_scores: final scores, numpy array of (num_boxes,)
        all_names: final class names, numpy array of (num_boxes,)
    """
    img, _, _ = data
    img = img.to(device)
    default_boxes = default_boxes.to(device)
    with torch.no_grad():
        out_confs, out_locs = ssd(img)
    out_confs = out_confs.squeeze(0)
    out_locs = out_locs.squeeze(0)
    out_boxes = decode(default_boxes, out_locs)
    out_labels = F.softmax(out_confs, dim=1)

    all_boxes = []
    all_scores = []
    all_names = []

    for c in range(1, NUM_CLASSES):
        cls_scores = out_labels[:, c]
        score_idx = cls_scores > args.score_thresh
        cls_boxes = out_boxes[score_idx]
        cls_scores = cls_scores[score_idx]

        box_idx = compute_nms(cls_boxes, cls_scores, args.nms_thresh,
                              args.max_num_boxes_per_class)

        cls_boxes = cls_boxes[box_idx]
        cls_scores = cls_scores[box_idx]
        cls_names = [c] * cls_boxes.size(0)

        all_boxes.append(cls_boxes)
        all_scores.append(cls_scores)
        all_names.extend(cls_names)

    all_boxes = torch.cat(all_boxes, dim=0)
    all_scores = torch.cat(all_scores, dim=0)

    img = img.squeeze(0).cpu().numpy()
    all_boxes *= img.shape[-1]
    all_boxes = all_boxes.cpu().numpy()
    all_scores = all_scores.cpu().numpy()
    all_names = np.array(all_names)

    return img, all_boxes, all_scores, all_names
Exemple #2
0
def post_process(confs, locs, scores, default_boxes, mode=1):
    # confs = tf.squeeze(confs, 0)
    # locs = tf.squeeze(locs, 0)
    # i have o return the locs back
    # print(scores)
    # print(confs)
    # print(locs)
    print(tf.math.reduce_max(locs), tf.math.reduce_min(locs))
    newres = decode(default_boxes, locs).numpy()
    if (mode == 2):
        confs = tf.math.softmax(confs, axis=-1)
        classes = tf.math.argmax(confs, axis=-1)
        scores = tf.math.reduce_max(confs, axis=-1)

    out_boxes = []
    out_labels = []
    out_scores = []
    # print(confs.shape,classes.shape, scores.shape, boxes.shape)
    for c in range(1, NUM_CLASSES):
        if (mode == 1):
            cls_scores = np.zeros(np.shape(confs))
            cls_scores[confs == c] = confs[confs == c]
        else:
            cls_scores = confs[:, c]

        score_idx = cls_scores > 0.5
        # cls_boxes = tf.boolean_mask(boxes, score_idx)
        # cls_scores = tf.boolean_mask(cls_scores, score_idx)
        cls_boxes = newres[score_idx]
        cls_scores = cls_scores[score_idx]

        nms_idx = compute_nms(cls_boxes, cls_scores, 0.35, 200)
        cls_boxes = tf.gather(cls_boxes, nms_idx)
        cls_scores = tf.gather(cls_scores, nms_idx)
        cls_labels = [c] * cls_boxes.shape[0]

        out_boxes.append(cls_boxes)
        out_labels.extend(cls_labels)
        out_scores.append(cls_scores)

    out_boxes = tf.concat(out_boxes, axis=0)
    out_scores = tf.concat(out_scores, axis=0)

    boxes = tf.clip_by_value(out_boxes, 0.0, 1.0).numpy()
    classes = np.array(out_labels)
    scores = out_scores.numpy()

    return boxes, classes, scores
def predict(imgs, default_boxes):
    confs, locs = ssd(imgs)

    confs = tf.squeeze(confs, 0)
    locs = tf.squeeze(locs, 0)

    confs = tf.math.softmax(confs, axis=-1)
    classes = tf.math.argmax(confs, axis=-1)
    scores = tf.math.reduce_max(confs, axis=-1)

    boxes = decode(default_boxes, locs)

    out_boxes = []
    out_labels = []
    out_scores = []

    for c in range(1, NUM_CLASSES):
        cls_scores = confs[:, c]

        score_idx = cls_scores > 0.6
        # cls_boxes = tf.boolean_mask(boxes, score_idx)
        # cls_scores = tf.boolean_mask(cls_scores, score_idx)
        cls_boxes = boxes[score_idx]
        cls_scores = cls_scores[score_idx]

        nms_idx = compute_nms(cls_boxes, cls_scores, 0.45, 200)
        cls_boxes = tf.gather(cls_boxes, nms_idx)
        cls_scores = tf.gather(cls_scores, nms_idx)
        cls_labels = [c] * cls_boxes.shape[0]

        out_boxes.append(cls_boxes)
        out_labels.extend(cls_labels)
        out_scores.append(cls_scores)

    out_boxes = tf.concat(out_boxes, axis=0)
    out_scores = tf.concat(out_scores, axis=0)

    boxes = tf.clip_by_value(out_boxes, 0.0, 1.0).numpy()
    classes = np.array(out_labels)
    scores = out_scores.numpy()

    return boxes, classes, scores
Exemple #4
0
def predict(confs, locs, thresh, default_boxes):

    confs = tf.squeeze(confs, 0)
    locs = tf.squeeze(locs, 0)

    confs = tf.math.softmax(confs, axis=-1)
    boxes = decode(default_boxes, locs)

    out_boxes = []
    out_labels = []
    out_scores = []

    print('confs shape =', np.shape(confs))
    print('confs max =', np.amax(confs))
    print('confs min =', np.amin(confs))
    print('confs max index =',
          np.where(np.array(confs) == np.array(confs).max()))

    for c in range(1, num_classes):
        cls_scores = confs[:, c]

        score_idx = cls_scores > thresh
        cls_boxes = boxes[score_idx]
        cls_scores = cls_scores[score_idx]

        nms_idx = compute_nms(cls_boxes, cls_scores, 0.45, 200)
        cls_boxes = tf.gather(cls_boxes, nms_idx)
        cls_scores = tf.gather(cls_scores, nms_idx)
        cls_labels = [c] * cls_boxes.shape[0]

        out_boxes.append(cls_boxes)
        out_labels.extend(cls_labels)
        out_scores.append(cls_scores)

    out_boxes = tf.concat(out_boxes, axis=0)
    out_scores = tf.concat(out_scores, axis=0)

    boxes = tf.clip_by_value(out_boxes, 0.0, 1.0).numpy()
    classes = np.array(out_labels)
    scores = out_scores.numpy()

    return boxes, classes, scores