def __call__(self, target, width, height):
        res = []
        labels = []
        for obj in target.iter('object'):
            difficult = int(obj.find('difficult').text) == 1
            if not self.keep_difficult and difficult:
                continue
            name = obj.find('name').text.upper().strip()
            bbox = obj.find('bndbox')

            pts = ['xmin', 'ymin', 'xmax', 'ymax']
            bndbox = []
            for i, pt in enumerate(pts):
                cur_pt = int(bbox.find(pt).text) - 1
                # scale height or width
                bndbox.append(cur_pt)
            label_idx = self.class_to_ind[name]
            labels.append(label_idx)
            res += [bndbox]  # [xmin, ymin, xmax, ymax, label_ind]

        target = BoxList(res)
        classes = torch.tensor(labels)
        target.fields['labels'] = classes

        return target
Exemple #2
0
    def __getitem__(self, index):
        img, annot = super().__getitem__(index)

        annot = [o for o in annot if o['iscrowd'] == 0]

        boxes = [o['bbox'] for o in annot]
        boxes = torch.as_tensor(boxes).reshape(-1, 4)
        target = BoxList(boxes, img.size, mode='xywh').convert('xyxy')

        classes = [o['category_id'] for o in annot]
        classes = [self.category2id[c] for c in classes]
        classes = torch.tensor(classes)
        target.fields['labels'] = classes

        target.clip(remove_empty=True)

        if self.transform is not None:
            img, target = self.transform(img, target)

        return img, target, index
Exemple #3
0
 def forward(self, image_list, feature_maps):
     grid_sizes = [feature_map.shape[-2:] for feature_map in feature_maps]
     anchors_over_all_feature_maps = self.grid_anchors(grid_sizes)
     anchors = []
     for i, (image_height, image_width) in enumerate(image_list.sizes):
         anchors_in_image = []
         for anchors_per_feature_map in anchors_over_all_feature_maps:
             boxlist = BoxList(anchors_per_feature_map,
                               (image_width, image_height),
                               mode="xyxy")
             self.add_visibility_to(boxlist)
             anchors_in_image.append(boxlist)
         anchors.append(anchors_in_image)
     return anchors
Exemple #4
0
    def select_over_scales(self, boxlists):
        results = []

        for boxlist in boxlists:
            scores = boxlist.fields['scores']
            labels = boxlist.fields['labels']
            box = boxlist.box

            result = []

            for j in range(1, self.n_class):
                id = (labels == j).nonzero().view(-1)
                score_j = scores[id]
                box_j = box[id, :].view(-1, 4)
                box_by_class = BoxList(box_j, boxlist.size, mode='xyxy')
                box_by_class.fields['scores'] = score_j
                box_by_class = boxlist_nms(box_by_class, score_j,
                                           self.nms_threshold)
                n_label = len(box_by_class)
                box_by_class.fields['labels'] = torch.full(
                    (n_label, ), j, dtype=torch.int64, device=scores.device)
                result.append(box_by_class)

            result = cat_boxlist(result)
            n_detection = len(result)

            if n_detection > self.post_top_n > 0:
                scores = result.fields['scores']
                img_threshold, _ = torch.kthvalue(
                    scores.cpu(), n_detection - self.post_top_n + 1)
                keep = scores >= img_threshold.item()
                keep = torch.nonzero(keep).squeeze(1)
                result = result[keep]

            results.append(result)

        return results
Exemple #5
0
    def forward_for_single_feature_map(self, box_cls, box_regression,
                                       centerness, anchors):
        N, _, H, W = box_cls.shape
        A = box_regression.size(1) // 4
        C = box_cls.size(1) // A

        # put in the same format as anchors
        box_cls = permute_and_flatten(box_cls, N, A, C, H, W)
        box_cls = box_cls.sigmoid()

        box_regression = permute_and_flatten(box_regression, N, A, 4, H, W)
        box_regression = box_regression.reshape(N, -1, 4)

        candidate_inds = box_cls > self.pre_nms_thresh
        pre_nms_top_n = candidate_inds.view(N, -1).sum(1)
        pre_nms_top_n = pre_nms_top_n.clamp(max=self.pre_nms_top_n)

        centerness = permute_and_flatten(centerness, N, A, 1, H, W)
        centerness = centerness.reshape(N, -1).sigmoid()

        # multiply the classification scores with centerness scores
        box_cls = box_cls * centerness[:, :, None]

        results = []
        for per_box_cls, per_box_regression, per_pre_nms_top_n, per_candidate_inds, per_anchors \
                in zip(box_cls, box_regression, pre_nms_top_n, candidate_inds, anchors):

            per_box_cls = per_box_cls[per_candidate_inds]

            per_box_cls, top_k_indices = per_box_cls.topk(per_pre_nms_top_n,
                                                          sorted=False)

            per_candidate_nonzeros = per_candidate_inds.nonzero()[
                top_k_indices, :]

            per_box_loc = per_candidate_nonzeros[:, 0]
            per_class = per_candidate_nonzeros[:, 1] + 1

            detections = self.box_coder.decode(
                per_box_regression[per_box_loc, :].view(-1, 4),
                per_anchors.bbox[per_box_loc, :].view(-1, 4))

            boxlist = BoxList(detections, per_anchors.size, mode="xyxy")
            boxlist.add_field("labels", per_class)
            boxlist.add_field("scores", torch.sqrt(per_box_cls))
            boxlist = boxlist.clip_to_image(remove_empty=False)
            boxlist = remove_small_boxes(boxlist, self.min_size)
            results.append(boxlist)

        return results
Exemple #6
0
    def forward_single_feature_map(self, location, cls_pred, box_pred,
                                   center_pred, image_sizes):
        batch, channel, height, width = cls_pred.shape

        cls_pred = cls_pred.view(batch, channel, height,
                                 width).permute(0, 2, 3, 1)
        cls_pred = cls_pred.reshape(batch, -1, channel).sigmoid()

        box_pred = box_pred.view(batch, 4, height, width).permute(0, 2, 3, 1)
        box_pred = box_pred.reshape(batch, -1, 4)

        center_pred = center_pred.view(batch, 1, height,
                                       width).permute(0, 2, 3, 1)
        center_pred = center_pred.reshape(batch, -1).sigmoid()

        candid_ids = cls_pred > self.threshold
        top_ns = candid_ids.view(batch, -1).sum(1)
        top_ns = top_ns.clamp(max=self.top_n)

        cls_pred = cls_pred * center_pred[:, :, None]

        results = []

        for i in range(batch):
            cls_p = cls_pred[i]
            candid_id = candid_ids[i]
            cls_p = cls_p[candid_id]
            candid_nonzero = candid_id.nonzero()
            box_loc = candid_nonzero[:, 0]
            class_id = candid_nonzero[:, 1] + 1

            box_p = box_pred[i]
            box_p = box_p[box_loc]
            loc = location[box_loc]

            top_n = top_ns[i]

            if candid_id.sum().item() > top_n.item():
                cls_p, top_k_id = cls_p.topk(top_n, sorted=False)
                class_id = class_id[top_k_id]
                box_p = box_p[top_k_id]
                loc = loc[top_k_id]

            detections = torch.stack(
                [
                    loc[:, 0] - box_p[:, 0],
                    loc[:, 1] - box_p[:, 1],
                    loc[:, 0] + box_p[:, 2],
                    loc[:, 1] + box_p[:, 3],
                ],
                1,
            )

            height, width = image_sizes[i]

            boxlist = BoxList(detections, (int(width), int(height)),
                              mode='xyxy')
            boxlist.fields['labels'] = class_id
            boxlist.fields['scores'] = torch.sqrt(cls_p)
            boxlist = boxlist.clip(remove_empty=False)
            boxlist = remove_small_box(boxlist, self.min_size)

            results.append(boxlist)

        return results
Exemple #7
0
 def __init__(self,margin=0.1):
     BoxList.__init__(self)
     self.margin = margin
Exemple #8
0
 def __init__(self,columns,margin=0.1):
 
     BoxList.__init__(self)
     self.columns = columns
     self.margin = margin
Exemple #9
0
 def __init__(self, margin=0.1):
     BoxList.__init__(self)
     self.margin = margin
    def forward(self, input, image_sizes=None, targets=None):
        features = self.backbone(input)
        #print(features.shape)
        features = features.view(features.size(0), -1)
        matrix = (self.fc1(features.relu()))
        matrix = self.fc2(matrix.relu())
        A, B = self.fc3(matrix.relu()), self.fc4(matrix.relu())
        A = A.view(A.size(0), self.size, self.size)
        B = B.view(B.size(0), self.limit, self.limit)
        #print(matrix)
        A = torch.einsum('bcd,bde->bce', A, A)
        B = torch.einsum('bcd,bde->bce', B, B)
        
        #print([t.box.shape for t in targets])
        if self.training:
            boxes = [t.box/500 for t in targets if t.box.numel() > 0]
            #print(boxes[0], boxes[0].shape)
            labels = [F.one_hot(t.fields['labels'] - 1, self.config.n_class - 1).float()*3 for t in targets if t.box.numel() > 0]
            #print(labels[0], labels[0].shape)
            vectors = [torch.cat([b, l], -1)[:self.limit] for b, l in zip(boxes, labels)]
            old_vectors = vectors
            vectors = [self.enc2(self.enc1(v).relu()) for v in vectors]
            rec_vectors = [self.dec2(self.dec1(v.relu()).relu()) for v in vectors]
            loss_rec = torch.stack([self.crit(o,r) for o, r in zip(old_vectors, rec_vectors)], 0).mean()
            
            #print(vectors[0], vectors[.shape)
            del boxes, labels
            
            svd = [LA.svd(m, full_matrices=False) for m in vectors]
            
            d = A.device
            #print([(u.shape, s.shape, vh.shape) for u, s, vh in svd])
            #svd = [(u.to(d), s.to(d), vh.to(d), max(u.size(0), vh.size(0))) for u,s,vh in svd]
            svd = [(pad(u, (self.limit, self.limit)), pad(torch.diag(s), (self.limit, self.limit)), pad(vh, (self.limit, self.limit))) for (u, s, vh) in svd]
            #print([(vh.shape) for u, s, vh in svd])
            U, P = zip(*[(u @ pad(vh, (self.limit, self.limit)), vh.transpose(0, 1) @ s @ vh) for u, s, vh in svd])
            #print(vectors[0], '\n\n')
            #print(U[0] @ P[0])
            P = torch.stack(P, 0)
            
            loss_herm = self.crit(A, P)
            
            D = [U[i] @ B[i] @ U[i].transpose(0,1) for i in range(len(U))]
            #print(D[0])
            loss_unit = torch.stack([self.crit(d, torch.zeros_like(d)) / torch.diag(d).square().mean() for d in D], 0).mean()
            #print(D[0])
            #print(matrix[0, 0, 0, 0], P[0, 0, 0])
            losses = {
                'loss_herm': loss_herm,
                'loss_unit': loss_unit,
                'loss_rec': loss_rec
            }
            
            
            return None, losses
        
        else:
            #print(matrix.shape)
            #print(P.shape, A.shape)
            
            
            w, v = LA.eigh(B)
            v = torch.einsum('bcd,bde->bce', v.transpose(-1, 2), A).abs()
            v = v.view(-1, self.limit)
            v = self.dec2(self.dec1(v.relu()).relu())
            v = v.view(-1, self.limit, self.limit)
            #print(v)           
            
            #print(w.sort(-1))
            #print(v, '\n\n')

            b = v[:, :, :4] * 500
            l = v[:, :, :(self.config.n_class - 1)]

            l = l.argmax(-1)
            print(b.shape, l.shape)
            print(b[0], l[0]+1)           #print(b.shape, l.shape, w.shape)

            boxes = []
            for i in range(w.size(0)):
                mybox = b[i][w[i] > 0]
                mylabel = l[i][w[i] > 0]
                myscores = w[i][w[i] > 0]
                #print(mybox, mylabel)
                #print(targets[i].box, targets[i].fields['labels'])
                box = BoxList(mybox, image_sizes[i])
                box.fields['labels'] = mylabel + 1
                box.fields['scores'] = myscores
                boxes.append(box)

            return boxes, None
Exemple #11
0
    def __init__(self, columns, margin=0.1):

        BoxList.__init__(self)
        self.columns = columns
        self.margin = margin