Exemple #1
0
    def id_to_rgb(cls, id):
        """
        Cover float[-2**20~2**20] to float32[0.~1.] rgb

        Parameters
        ----------
        id : int, float or numpy
            float[-2**20~2**20].

        Returns
        -------
        (3,)float32
            RGB for Blender.

        """
        if isinstance(id, (float, int)):
            id = np.array(id)
        rgb = np.zeros(id.shape + (3, ), dtype=np.float64)
        rgb[..., 0] = id < 0

        absf = np.abs(id)
        int_part = absf // 1
        # rgb[..., 1] = 1 - 1 / (int_part + 1)
        poww = np.int32(np.log2(int_part + 1, dtype=np.float32)) + 1
        denominator = (2**poww).round()
        rgb[..., 1] = ((int_part - denominator // 2 + 1) * 2 + 1) / denominator

        rgb[..., 2] = absf % 1
        return rgb
Exemple #2
0
 def id_to_rgb(f):
     if isinstance(f, (float, int)):
         f = np.array(f)
     rgb = np.zeros(f.shape + (3, ), dtype=np.float64)
     rgb[..., 0] = f < 0
     absf = np.abs(f)
     int_part = absf // 1
     rgb[..., 1] = 1 - 1 / (int_part + 1)
     rgb[..., 2] = absf % 1
     return rgb
def getMaskOfPgt(argkv):
    pgt, cycle_tmpl, shape, out_cyc_r = argkv.get('pgt'), argkv.get(
        'cycle_tmpl'), argkv.get('shape'), argkv.get('out_cyc_r')
    if not isinstance(pgt, Vector):
        pgt = Vector(pgt)
    bg = np.zeros(shape[-2:], dtype=np.int32)
    if out_cyc_r:
        bg -= 1
    mask = pasteImg(bg, cycle_tmpl, pgt - cycle_tmpl.shape[-1] // 2)
    #    g()
    #    print(pgt)
    #    show-mask
    #    tree-argkv
    return (mask == 0), (mask == 1),
    def __init__(self,
                 cyc_r=7,
                 log_freq=60 * 5,
                 poolings=['avg'],
                 number_worker=8,
                 out_cyc_r=None,
                 layerNorma=True,
                 probMargin=None,
                 temper=1):
        super(SpatialSoftmax, self).__init__()
        self.out_cyc_r = out_cyc_r
        self.poolings = poolings
        self.log_freq = log_freq
        self.cyc_r = cyc_r
        self.layerNorma = layerNorma
        self.probMargin = probMargin
        self.temper = temper
        #        raw_cycle_tmpl = getWeightCore(300, seta=.25)
        #        raw_cycle_tmpl = raw_cycle_tmpl > raw_cycle_tmpl[150,0]
        #        cycle_tmpl_np = resize(raw_cycle_tmpl, np.int8((cyc_r*2, cyc_r*2, )))

        cyc_tmpl_np = getCycle(cyc_r)
        cycle_tmpl = np.int32(cyc_tmpl_np > .5)
        #        g()
        if out_cyc_r is not None:
            #            out_cycle_tmpl_np = resize(raw_cycle_tmpl, (out_cyc_r*2, out_cyc_r*2, ))
            #            out_cycle_tmpl = np.int32(out_cycle_tmpl_np >.5) - 1

            out_cycle_tmpl_np = getCycle(out_cyc_r)
            out_cycle_tmpl = np.int32(out_cycle_tmpl_np > .5) - 1

            inCycIndx = np.zeros(out_cycle_tmpl.shape, np.bool)
            pasteImg(inCycIndx, cycle_tmpl, Vector([out_cyc_r - cyc_r] * 2))
            out_cycle_tmpl[inCycIndx] = 1
            cycle_tmpl = out_cycle_tmpl
#        self.cycle_tmpl =  th.from_numpy(cycle_tmpl)
        self.cycle_tmpl = (cycle_tmpl)
Exemple #5
0
@author: yl
"""
import cv2
from boxx import *
import skimage.data as sda

from boxx import sin, cos
from boxx import Vector, np, timegap, intround
import time

img = sda.astronaut()
imgs = [img]

hw = Vector([800, 800])
imgHw = hw
bg = np.zeros(list(imgHw) + [3]).astype(np.uint8)

bgc = 250, 85, 70
bg[:] = bgc
#bg[:] = 0

from skimage import draw

line = draw.line(0, 0, 10, 10)


def drawXyCycle(img, yx=(200, 300), r=8, color=255):
    cir = draw.circle(*yx, r)
    cir = list(cir)
    cir[0] = cir[0].clip(0, img.shape[0] - 1)
    cir[1] = cir[1].clip(0, img.shape[1] - 1)
            batchPerGpu = 32
            channl = 17
            gpun = th.cuda.device_count()
        batch = batchPerGpu * gpun

    cyc_r = intround((25) / np.array([353, 257]).mean() * hw.mean())
    pgt = hw // 2
    pshift = (hw * .13).intround()
    pshift = Vector([0, 0])
    pre = pgt + pshift
    coreShape = Vector((
        cyc_r * 2,
        cyc_r * 2,
    ))

    feat = np.zeros([batch, channl] + list(hw))
    raw_cycle_tmpl = getWeightCore(300, seta=.25)
    #    raw_cycle_tmpl = raw_cycle_tmpl > raw_cycle_tmpl[150,0]
    core = resize(raw_cycle_tmpl, coreShape)

    msegt = feat.copy()
    msegt[..., (pgt - coreShape // 2).x:(pgt + coreShape // 2).x,
          (pgt - coreShape // 2).y:(pgt + coreShape // 2).y, ] = core
    feat[..., (pre - coreShape // 2).x:(pre + coreShape // 2).x,
         (pre - coreShape // 2).y:(pre + coreShape // 2).y, ] = core

    msegt = torch.tensor(msegt)
    feat = torch.tensor(feat)

    #    show(core, feat)
from boxx import makedirs, np, npa, imread, pathjoin, glob, os, resize, p, uint8

ignoreWarning()

celebA_path = os.path.expanduser('~/dataset/celeba')
dataset = pathjoin(celebA_path, 'eyeglasses_stgan_dataset')

st_gan_dataset = pathjoin(dataset, 'tf_st_gan_dataset')

psa = sorted(glob(pathjoin(dataset, 'trainA/*')))[0::2]
psb = sorted(glob(pathjoin(dataset, 'trainB/*')))[1::2]

lena = len(psa)
lenb = len(psb)

attribute = np.zeros((lena + lenb, 40), np.bool)
attribute[-lenb:, 15] = True

img = imread(psa[0])
shape = img.shape

makedirs(p / st_gan_dataset)
imgns = psa + psb

if shape[:2] != (
        218,
        178,
):

    def f(imgn):
        return uint8(resize(imread(imgn), (
Exemple #8
0
def visBboxList(rgb,
                bboxList,
                path='/tmp/visCanvas/tmp.pdf',
                classNames=None,
                box_alpha=0.8,
                show_class=True,
                thresh=0.1,
                show_mask=None,
                pltshow=False):

    if classNames is None:
        classNames = {i: "%d-class" % i for i in range(1111)}
    classn = len(classNames)
    dataset = dicto(classes=classNames)
    cls_segms = [[] for _ in range(classn)]
    cls_boxes = [np.zeros((0, 5), np.float32) for _ in range(classn)]

    #cls_segms = None
    #cls_boxes = [np.zeros((0,5), np.float32) for _ in range(classn)]
    bboxnps = bboxList.bbox
    extraFields = {
        k: v.cpu().numpy()
        for k, v in bboxList.extra_fields.items()
    }
    if show_mask is None:
        if 'mask' in extraFields:
            show_mask = True

    for ind, bboxnp in enumerate(bboxnps):
        #        g()
        other = dicto({k: v[ind] for k, v in extraFields.items()})
        if other.scores < thresh:
            continue
        c = other.labels
        if show_mask:
            rle = mask2rle(other.mask)
            cls_segms[c].append(rle)
        if bboxList.mode == 'xyxy':
            cls_boxes[c] = np.append(cls_boxes[c],
                                     [list(bboxnp) + [other.scores]], 0)

    cls_keyps = None
    if not show_mask:
        cls_segms = None


#    g()
    outputDir, name = dirname(path), filename(path)
    vis_one_image(
        rgb,  # BGR -> RGB for visualization
        name,
        outputDir,
        cls_boxes,
        cls_segms,
        cls_keyps,
        dataset=dataset,
        box_alpha=0.8,
        show_class=True,
        thresh=thresh,
        kp_thresh=2,
        pltshow=pltshow,
    )