Exemple #1
0
 def sample(self):
     if self.downloading:
         self.set_hdr_paths()
     while not len(self.hdr_paths):
         self.set_hdr_paths()
         if timegap(5, 'waiting for download ".hdr" file'):
             print('Waiting for download first ".hdr" file....')
         sleep(0.1)
     return random.choice(self.hdr_paths)
        def softmaxFgBgSub(fg, bg, t=1):
            diff = bg - fg
            toExp = t * diff
            if (toExp > 80).sum() and timegap(1, 'toExp'):
                from boxx import prettyFrameLocation, pred
                print(prettyFrameLocation())
                pred - "toExp.max() is %.2f > 80, diff.max() is %.2f" % (
                    toExp.max(), diff.max())

            prob = 1 / (1 + th.exp(toExp))
            return prob
Exemple #3
0
 def sample(self):
     if self.downloading:
         self.set_hdr_paths()
     while not len(self.hdr_paths):
         assert (
             self.downloading
         ), f'No hdri file in "{self.hdri_dir}", make sure HdriManager(download=True)'
         self.set_hdr_paths()
         if timegap(5, 'waiting for download ".hdr" file'):
             print('Waiting for download first ".hdr" file....')
         sleep(0.1)
     return random.choice(self.hdr_paths)
    def forward(self, feats, xyens):

        if self.layerNorma:
            feats = layerNormaFun(feats)
        losses = [
            spatialSoftmax(feats, xyens) * w
            for w, spatialSoftmax in zip(self.weights, self.spatialSoftmaxs)
        ]
        if self.pointMaxW:
            losses += [self.pointMaxW * self.pointMax(feats, xyens)]
        if timegap(self.log_freq, 'losses'):
            print(
                Markdown([
                    dict(
                        zip(self.cyc_rs + ['point'],
                            [strnum(float(loss.cpu())) for loss in losses]))
                ]))
        return sum(losses) / len(losses)
    def forward(self, feats, xyens):
        shape = feats.shape
        device = feats.device
        dim1, dim2 = np.mgrid[:shape[-4], :shape[-3]]
        dim1, dim2 = torch.tensor(dim1.ravel(),
                                  device=device), torch.tensor(dim2.ravel(),
                                                               device=device)
        xyens = xyens.view(-1, 3)
        typee = feats.type()
        x, y, existMask = xyens[..., 0].type(
            th.long).to(device), xyens[..., 1].type(
                th.long).to(device), xyens[..., -1].type(typee).to(device)
        #        tree([dim1.ravel(), dim2.ravel(), y, x], deep=1)
        validXMask = (x >= 0) & (x < shape[-1])
        validYMask = (y >= 0) & (y < shape[-2])

        #        x = torch.clamp(x, 0, shape[-1])
        #        y = torch.clamp(y, 0, shape[-2])
        x[~validXMask] = 0
        y[~validYMask] = 0

        indMask = ((existMask > 0) & validXMask & validYMask).type(typee)

        point_feats = feats[dim1, dim2, y, x]
        siged = th.sigmoid(point_feats)
        loss = -th.log(siged + eps)
        loss = (loss * indMask).sum() / (indMask.sum() + eps)
        loss *= self.w

        if self.suppressionBg or cf.get('debugPoinMax'):
            backloss = self._suppressionBg(feats, loss)

            s = f"pointmax: {loss} + "
            loss += backloss
            s += f"backloss: {backloss}"
            s = f"loss: {loss} = " + s
            if timegap(cf.debugPoinMax, 'debugPoinMax'):
                pred - s


#        g()
#        1/0
        return loss
Exemple #6
0
        if key == ord('w'):
            cycR += 1
        if key == ord('s'):
            cycR -= 1

        if key == ord('e'):
            showeye = not showeye

        tDiff = time.time() - lastTime
        lastTime = time.time()
        timeLong = lastTime - begin
        lastDu += tDiff * duSpeed
        lastDu %= 360

        if timegap(genGap, 'gen_points'):
            for ind in range(lineNumber):
                point = FarAwayPoint(lastDu + ind * (360 / lineNumber),
                                     color=colors[ind],
                                     r=cycR)
                points.append(point)

        img = bg.copy()
        points = points[-300:]
        for point in points:
            point(img)

        if showeye:
            from process_img import png

            pngHw = Vector(png.shape[:2])
    def forward(self, feats, xyens):
        logName = 'cyc_r: %s, out_cyc_r: %s' % (self.cyc_r, self.out_cyc_r
                                                or 'N')
        logTag = timegap(self.log_freq, logName)
        if logTag:
            logDic = dicto()
        if self.layerNorma:
            feats = layerNormaFun(feats)
        tensorType = feats.type()
        shape = self.shape = feats.shape
        feats = feats.view(-1, *shape[-2:])
        xyens = xyens.view(-1, 3)
        pgts = xyens[..., [1, 0]].cpu().numpy()
        existMask = xyens[..., -1].type(tensorType)

        #        with timeit(logName):
        masks = map2(getMaskOfPgt, [
            dict(pgt=pgt,
                 cycle_tmpl=self.cycle_tmpl,
                 shape=shape,
                 out_cyc_r=self.out_cyc_r) for pgt in pgts
        ])
        #            masks = mapmp(self.getMask, pgts, pool=4)
        masks = np.array(masks)
        masks = th.from_numpy(np.uint8(masks)).type(tensorType).cuda()

        loss = 0

        #(lambda a,b,t=1:e**(t*a)/(e**(t*a)+e**(t*b)))(2,1,5)

        def softmaxFgBgOld(fg, bg, t=1):
            fge = th.exp(fg * t)
            bge = th.exp(bg * t)
            prob = fge / (fge + bge + eps)
            return prob

        def softmaxFgBgSubMax(fg, bg, t=1):
            fg = fg * t
            bg = bg * t
            maxx = max(float(fg.max()), float(bg.max()))
            fge = th.exp(fg - maxx)
            bge = th.exp(bg - maxx)
            prob = fge / (fge + bge + eps)
            return prob

        def softmaxFgBgSub(fg, bg, t=1):
            diff = bg - fg
            toExp = t * diff
            if (toExp > 80).sum() and timegap(1, 'toExp'):
                from boxx import prettyFrameLocation, pred
                print(prettyFrameLocation())
                pred - "toExp.max() is %.2f > 80, diff.max() is %.2f" % (
                    toExp.max(), diff.max())

            prob = 1 / (1 + th.exp(toExp))
            return prob

        softmaxFgBg = softmaxFgBgSubMax

        def CE(fg, bg):
            prob = softmaxFgBg(fg, bg)
            avgLosses = -th.log(prob + eps)
            return avgLosses

        if 'avg' in self.poolings:
            bgAvgPool = (feats * masks[..., 0, :, :]).sum(-1).sum(-1) / (
                masks[..., 0, :, :].sum(-1).sum(-1) + eps)
            fgAvgPool = (feats * masks[..., 1, :, :]).sum(-1).sum(-1) / (
                masks[..., 1, :, :].sum(-1).sum(-1) + eps)
            avgProbs = softmaxFgBg(fgAvgPool, bgAvgPool, self.temper)
            avgLosses = -th.log(avgProbs + eps)

            indexMask = existMask * (avgProbs < self.probMargin).type(
                tensorType) if self.probMargin else existMask

            avgLoss = (avgLosses * indexMask).sum() / (indexMask.sum() + eps)
            loss += avgLoss

            if logTag:
                logDic.avgLoss = float(avgLoss)
                logDic.avgProb = float(avgProbs.mean())

        if 'max' in self.poolings:
            bgMaxPool = (feats * masks[..., 0, :, :]).max(-1)[0].max(-1)[0]
            fgMaxPool = (feats * masks[..., 1, :, :]).max(-1)[0].max(-1)[0]
            maxProbs = softmaxFgBg(fgMaxPool, bgMaxPool, self.temper)
            maxLosses = -th.log(maxProbs + eps)

            indexMask = existMask * (maxProbs < self.probMargin).type(
                tensorType) if self.probMargin else existMask

            maxLoss = (maxLosses * indexMask).sum() / (indexMask.sum() + eps)
            loss += maxLoss

            if logTag:
                logDic.maxLoss = float(maxLoss)
                logDic.maxProb = float(maxProbs.mean())
        if logTag:
            print("%s | %s" % (logName, ', '.join(
                map(lambda kv: "%s: %.3f" % kv, logDic.items()))))


#            print(Markdown([{k:strnum(v) for k,v in logDic.items()}]))
#        g()
        return loss