center_anchor = 1 if subject_id == 'lausanne125': parc_file = os.path.join( '/Applications/freesurfer/subjects/', subject_id, 'label', hemi + '.myaparc_' + str(parc_scale) + '.annot') elif subject_id == 'fsaverage': parc_file = os.path.join( '/Users/lindenmp/Google-Drive-Penn/work/research_projects/normative_neurodev_cs_t1/figs_support/Parcellations/FreeSurfer5.3/fsaverage/label/', hemi + '.Schaefer2018_' + str(parc_scale) + 'Parcels_17Networks_order.annot') brain_plot(roi_data, parcel_names, parc_file, fig_str, subject_id=subject_id, hemi=hemi, color='coolwarm', center_anchor=center_anchor) # # Figures # In[18]: f, ax = plt.subplots(1) f.set_figwidth(1) f.set_figheight(1) limit = 3 sns.heatmap(np.zeros((1, 1)), annot=False,
for pc in np.arange(0,n_components): roi_data = pca.components_[pc,:] for hemi in ('lh', 'rh'): fig_str = hemi + '_' + metric + '_pc_' + str(pc) figs_to_delete.append('ventral_'+fig_str) figs_to_delete.append('med_'+fig_str) figs_to_delete.append('lat_'+fig_str) if subject_id == 'lausanne125': parc_file = os.path.join('/Applications/freesurfer/subjects/', subject_id, 'label', hemi + '.myaparc_' + str(parc_scale) + '.annot') elif subject_id == 'fsaverage': parc_file = os.path.join('/Users/lindenmp/Google-Drive-Penn/work/research_projects/normative_neurodev_cs_t1/figs_support/Parcellations/FreeSurfer5.3/fsaverage/label/', hemi + '.Schaefer2018_' + str(parc_scale) + 'Parcels_17Networks_order.annot') # project subject's data to vertices brain_plot(roi_data, parcel_names, parc_file, fig_str, subject_id = subject_id, hemi = hemi, surf = 'inflated', showcolorbar = False) # In[21]: for pc in np.arange(0,n_components): f, axes = plt.subplots(2, 2) f.set_figwidth(3) f.set_figheight(4) plt.subplots_adjust(wspace=0, hspace=-0.465) print(metric, pc) # column 0: fig_str = 'lh_'+metric+'_pc_'+str(pc)+'.png' try:
if subject_id == 'lausanne125': parc_file = os.path.join( '/Applications/freesurfer/subjects/', subject_id, 'label', hemi + '.myaparc_' + str(parc_scale) + '.annot') elif subject_id == 'fsaverage': parc_file = os.path.join( '/Users/lindenmp/Dropbox/Work/ResProjects/NormativeNeuroDev_CrossSec_T1/figs_support/Parcellations/FreeSurfer5.3/fsaverage/label/', hemi + '.Schaefer2018_' + str(parc_scale) + 'Parcels_17Networks_order.annot') # project subject's data to vertices brain_plot(roi_data, parcel_names, parc_file, fig_str, subject_id=subject_id, hemi=hemi, surf='inflated', center_anchor=1, color='hot') # In[37]: for pheno in phenos: for metric in metrics: for hemi in ('lh', 'rh'): print(pheno, metric) # Plots of univariate pheno correlation fig_str = hemi + '_' + pheno + '_' + metric + '_z' roi_data = df_pheno_z.loc[pheno].filter(regex=metric, axis=0)['coef'].values