Exemple #1
0
def plscorr_eval(train_fmri_ts, train_feat_ts, val_fmri_ts, val_feat_ts,
                 out_dir, mask_file):
    """Compute PLS correlation between brain activity and CNN activation."""
    train_feat_ts = train_feat_ts.reshape(-1, train_feat_ts.shape[3]).T
    val_feat_ts = val_feat_ts.reshape(-1, val_feat_ts.shape[3]).T
    train_fmri_ts = train_fmri_ts.T
    val_fmri_ts = val_fmri_ts.T

    # Iteration loop for different component number
    #for n in range(5, 19):
    #    print '--- Components number %s ---' %(n)
    #    plsca = PLSCanonical(n_components=n)
    #    plsca.fit(train_feat_ts, train_fmri_ts)
    #    pred_feat_c, pred_fmri_c = plsca.transform(val_feat_ts, val_fmri_ts)
    #    pred_fmri_ts = plsca.predict(val_feat_ts) 
    #    # calculate correlation coefficient between truth and prediction
    #    r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair')
    #    # get top 20% corrcoef for model evaluation
    #    vsample = int(np.rint(0.2*len(r)))
    #    print 'Sample size for evaluation : %s' % (vsample)
    #    r.sort()
    #    meanr = np.mean(r[-1*vsample:])
    #    print 'Mean prediction corrcoef : %s' %(meanr)
    
    # model generation based on optimized CC number
    cc_num = 10
    plsca = PLSCanonical(n_components=cc_num)
    plsca.fit(train_feat_ts, train_fmri_ts)
    from sklearn.externals import joblib
    joblib.dump(plsca, os.path.join(out_dir, 'plsca_model.pkl'))
    plsca = joblib.load(os.path.join(out_dir, 'plsca_model.pkl'))

    # calculate correlation coefficient between truth and prediction
    pred_fmri_ts = plsca.predict(val_feat_ts)
    fmri_pred_r = corr2_coef(val_fmri_ts.T, pred_fmri_ts.T, mode='pair')
    mask = vutil.data_swap(mask_file)
    vxl_idx = np.nonzero(mask.flatten()==1)[0]
    tmp = np.zeros_like(mask.flatten(), dtype=np.float64)
    tmp[vxl_idx] = fmri_pred_r
    tmp = tmp.reshape(mask.shape)
    vutil.save2nifti(tmp, os.path.join(out_dir, 'pred_fmri_r.nii.gz'))
    pred_feat_ts = pls_y_pred_x(plsca, val_fmri_ts)
    pred_feat_ts = pred_feat_ts.T.reshape(96, 14, 14, 540)
    np.save(os.path.join(out_dir, 'pred_feat.npy'), pred_feat_ts)

    # get PLS-CCA weights
    feat_cc, fmri_cc = plsca.transform(train_feat_ts, train_fmri_ts)
    np.save(os.path.join(out_dir, 'feat_cc.npy'), feat_cc)
    np.save(os.path.join(out_dir, 'fmri_cc.npy'), fmri_cc)
    feat_weight = plsca.x_weights_.reshape(96, 14, 14, cc_num)
    #feat_weight = plsca.x_weights_.reshape(96, 11, 11, cc_num)
    fmri_weight = plsca.y_weights_
    np.save(os.path.join(out_dir, 'feat_weights.npy'), feat_weight)
    np.save(os.path.join(out_dir, 'fmri_weights.npy'), fmri_weight)
    fmri_orig_ccs = get_pls_components(plsca.y_scores_, plsca.y_loadings_)
    np.save(os.path.join(out_dir, 'fmri_orig_ccs.npy'), fmri_orig_ccs)
Exemple #2
0
def show_retinotopy(prf_dir, data_type):
    """Show estimate parameters on brain."""
    #data_type = 'ecc'
    vol = np.empty((73728, ))
    vol[:] = np.NaN
    subj_dir = '/'.join(prf_dir.split('/')[:-2])
    # get roi list
    roi_list = ['v1lh', 'v2lh', 'v3lh', 'v4lh', 'v1rh', 'v2rh', 'v3rh', 'v4rh']
    rois = os.listdir(prf_dir)
    rois = [roi for roi in rois if roi in roi_list]
    for roi in rois:
        vxl_idx, train_ts, val_ts = dataio.load_fmri(subj_dir, roi=roi)
        del train_ts, val_ts
        data = np.load(os.path.join(prf_dir, roi, data_type + '.npy'))
        vol[vxl_idx] = data
    vol = vol.reshape(18, 64, 64)
    vutil.save2nifti(vol, os.path.join(prf_dir, data_type + '.nii.gz'))
Exemple #3
0
def prf2visual_angle(prf_mtx, img_size, out_dir, base_name):
    """Generate retinotopic mapping based on voxels' pRF parameters.
    `prf_mtx` is a #voxel x pRF-features matrix, pRF features can be 2 columns
    (row, col) of image or 3 columns which adding a third pRF size parameters.

    """
    feature_size = prf_mtx.shape[1]
    pos_mtx = prf_mtx[:, :2]
    # eccentricity
    ecc = retinotopy.coord2ecc(pos_mtx, img_size, 20)
    vol = ecc.reshape(18, 64, 64)
    vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_ecc.nii.gz'))
    # angle
    angle = retinotopy.coord2angle(pos_mtx, img_size)
    vol = angle.reshape(18, 64, 64)
    vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_angle.nii.gz'))
    # pRF size
    if feature_size > 2:
        size_angle = retinotopy.get_prf_size(prf_mtx, 55, 20)
        vol = size_angle.reshape(18, 64, 64)
        vutil.save2nifti(vol, os.path.join(out_dir, base_name+'_size.nii.gz'))