# We can apply preprocessing steps to the dataset. It is also possible to skip # this step and not apply any preprocessing. preprocess( concat_ds=ds, preprocessors=[MNEPreproc(fn='resample', sfreq=10)] ) ############################################################################### # We save the dataset to a an existing directory. It will create a '.fif' file # for every dataset in the concat dataset. Additionally it will create two # JSON files, the first holding the description of the dataset, the second # holding the name of the target. If you want to store to the same directory # several times, for example due to trying different preprocessing, you can # choose to overwrite the existing files. ds.save( path='./', overwrite=False, ) ############################################################################## # We load the saved dataset from a directory. Signals can be preloaded in # compliance with mne. Optionally, only specific '.fif' files can be loaded # by specifying their ids. The target name can be changed, if the dataset # supports it (TUHAbnormal for example supports 'pathological', 'age', and # 'gender'. If you stored a preprocessed version with target 'pathological' # it is possible to change the target upon loading). ds_loaded = load_concat_dataset( path='./', preload=True, ids_to_load=[1,3], target_name=None, )
preprocess( concat_ds=dataset, preprocessors=[MNEPreproc(fn='resample', sfreq=10)] ) ############################################################################### # We save the dataset to a an existing directory. It will create a '.fif' file # for every dataset in the concat dataset. Additionally it will create two # JSON files, the first holding the description of the dataset, the second # holding the name of the target. If you want to store to the same directory # several times, for example due to trying different preprocessing, you can # choose to overwrite the existing files. tmpdir = tempfile.mkdtemp() # write in a temporary directory dataset.save( path=tmpdir, overwrite=False, ) ############################################################################## # We load the saved dataset from a directory. Signals can be preloaded in # compliance with mne. Optionally, only specific '.fif' files can be loaded # by specifying their ids. The target name can be changed, if the dataset # supports it (TUHAbnormal for example supports 'pathological', 'age', and # 'gender'. If you stored a preprocessed version with target 'pathological' # it is possible to change the target upon loading). dataset_loaded = load_concat_dataset( path=tmpdir, preload=True, ids_to_load=[1, 3], target_name=None, )