def gen_brsa_data_matnorm_model(U, n_T, n_V, space_cov, time_cov, n_nureg): n_C = U.shape[0] beta = rmn(U, space_cov) X = rmn(np.eye(n_T), np.eye(n_C)) beta_0 = rmn(np.eye(n_nureg), space_cov) X_0 = rmn(np.eye(n_T), np.eye(n_nureg)) Y_hat = X.dot(beta) + X_0.dot(beta_0) Y = Y_hat + rmn(time_cov, space_cov) sizes = {"n_C": n_C, "n_T": n_T, "n_V": n_V} train = {"beta": beta, "X": X, "Y": Y, "U": U, "X_0": X_0} return train, sizes
def test_against_scipy_mvn_col_conditional(seeded_rng): # have to be careful for constructing everything as a submatrix of a big # PSD matrix, else no guarantee that anything's invertible. cov_np = wishart.rvs(df=m + p + 2, scale=np.eye(m + p)) rowcov = CovIdentity(size=m) colcov = CovUnconstrainedCholesky(Sigma=cov_np[0:n, 0:n]) A = cov_np[n:, 0:n] Q = CovUnconstrainedCholesky(Sigma=cov_np[n:, n:]) X = rmn(np.eye(m), np.eye(n)) A_tf = tf.constant(A, "float64") X_tf = tf.constant(X, "float64") Q_np = Q._cov colcov_np = colcov._cov - A.T.dot(np.linalg.inv(Q_np)).dot((A)) scipy_answer = np.sum( multivariate_normal.logpdf(X, np.zeros([n]), colcov_np)) tf_answer = matnorm_logp_conditional_col(X_tf, rowcov, colcov, A_tf, Q) assert_allclose(scipy_answer, tf_answer, rtol=rtol)
def test_matnorm_regression_unconstrained(seeded_rng): # Y = XB + eps # Y is m x p, B is n x p, eps is m x p X = norm.rvs(size=(m, n)) B = norm.rvs(size=(n, p)) Y_hat = X.dot(B) rowcov_true = np.eye(m) colcov_true = wishart.rvs(p + 2, np.eye(p)) Y = Y_hat + rmn(rowcov_true, colcov_true) row_cov = CovIdentity(size=m) col_cov = CovUnconstrainedCholesky(size=p) model = MatnormalRegression(time_cov=row_cov, space_cov=col_cov) model.fit(X, Y, naive_init=False) assert pearsonr(B.flatten(), model.beta_.flatten())[0] >= corrtol pred_y = model.predict(X) assert pearsonr(pred_y.flatten(), Y_hat.flatten())[0] >= corrtol model = MatnormalRegression(time_cov=row_cov, space_cov=col_cov) model.fit(X, Y, naive_init=True) assert pearsonr(B.flatten(), model.beta_.flatten())[0] >= corrtol pred_y = model.predict(X) assert pearsonr(pred_y.flatten(), Y_hat.flatten())[0] >= corrtol
def test_matnorm_regression_scaledDiag(seeded_rng): # Y = XB + eps # Y is m x n, B is n x p, eps is m x p X = norm.rvs(size=(m, n)) B = norm.rvs(size=(n, p)) Y_hat = X.dot(B) rowcov_true = np.eye(m) colcov_true = np.diag(np.abs(norm.rvs(size=p))) Y = Y_hat + rmn(rowcov_true, colcov_true) row_cov = CovIdentity(size=m) col_cov = CovDiagonal(size=p) model = MatnormalRegression(time_cov=row_cov, space_cov=col_cov) model.fit(X, Y, naive_init=False) assert pearsonr(B.flatten(), model.beta_.flatten())[0] >= corrtol pred_y = model.predict(X) assert pearsonr(pred_y.flatten(), Y_hat.flatten())[0] >= corrtol # we only do calibration test on the scaled diag # model because to hit corrtol on unconstrainedCov # we'd need a lot more data, which would make the test slow X_hat = model.calibrate(Y) assert pearsonr(X_hat.flatten(), X.flatten())[0] >= corrtol
def test_against_scipy_mvn_col_marginal(seeded_rng): rowcov = CovIdentity(size=m) colcov = CovUnconstrainedCholesky(size=n) Q = CovUnconstrainedCholesky(size=p) X = rmn(np.eye(m), np.eye(n)) A = rmn(np.eye(p), np.eye(n)) A_tf = tf.constant(A, "float64") X_tf = tf.constant(X, "float64") Q_np = Q._cov colcov_np = colcov._cov + A.T.dot(Q_np).dot(A) scipy_answer = np.sum(multivariate_normal.logpdf( X, np.zeros([n]), colcov_np)) tf_answer = matnorm_logp_marginal_col(X_tf, rowcov, colcov, A_tf, Q) assert_allclose(scipy_answer, tf_answer, rtol=rtol)
def test_against_scipy_mvn_col(seeded_rng): rowcov = CovIdentity(size=m) colcov = CovUnconstrainedCholesky(size=n) X = rmn(np.eye(m), np.eye(n)) X_tf = tf.constant(X, "float64") colcov_np = colcov._cov scipy_answer = np.sum( multivariate_normal.logpdf(X, np.zeros([n]), colcov_np)) tf_answer = matnorm_logp(X_tf, rowcov, colcov) assert_allclose(scipy_answer, tf_answer, rtol=rtol)
def test_matnorm_calibration_raises(seeded_rng): # Y = XB + eps # Y is m x n, B is n x p, eps is m x p X = norm.rvs(size=(2, 5)) B = norm.rvs(size=(5, 3)) Y_hat = X.dot(B) rowcov_true = np.eye(2) colcov_true = np.diag(np.abs(norm.rvs(size=3))) Y = Y_hat + rmn(rowcov_true, colcov_true) row_cov = CovIdentity(size=2) col_cov = CovDiagonal(size=3) model = MatnormalRegression(time_cov=row_cov, space_cov=col_cov) model.fit(X, Y, naive_init=False) with pytest.raises(RuntimeError): model.calibrate(Y)