Exemple #1
0
def test_draw_tube_spheres():
    """
    Test if the function maps all the points within the radius of a segment line (defined by 2 given points) to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the segment line:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    vertex0 = [
        np.random.randint(shape[0] / 2),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    vertex1 = [
        np.random.randint(shape[0] / 2, shape[0]),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    radius = np.random.randint(1, 4)
    labels = tube_seg.draw_tube_from_spheres(img, vertex0, vertex1, radius)
    line = draw.line_nd(vertex0, vertex1, endpoint=True)
    coords = np.where(labels < 1)
    d_bg = max(shape)
    for pt in np.array(coords).T:
        distance_min = min(np.sum((np.array(line).T - pt)**2, axis=1))
        d_bg = min(distance_min, d_bg)
    coords = np.where(labels > 0)
    d_tube = 0
    for pt in np.array(coords).T:
        distance_min = min(np.sum((np.array(line).T - pt)**2, axis=1))
        d_tube = max(distance_min, d_tube)
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the segment line is greater than radius
    IV. maximum distance between 1-valued points and the segment line is less than or equal to radius
    """
    assert labels.shape == shape
    assert np.unique(labels).all() in [0, 1]
    assert d_bg > radius**2
    assert d_tube <= radius**2
Exemple #2
0
def test_tubes_seg():
    """
    Test if the function maps all the points within the radius of polyline (defined by given vertices) to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the polyline:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    vertices = np.random.randint(min(shape), size=(4, 3))
    radius = np.random.randint(1, 4)
    labels = tube_seg.tubes_seg(img, vertices, radius)
    point = np.empty((3, 0), dtype=int)
    for i in range(3):
        lines = draw.line_nd(vertices[i], vertices[i + 1], endpoint=True)
        point = np.concatenate((point, np.array(lines)), axis=1)
    coords = np.where(labels < 1)
    d_bg = max(shape)
    for pt in np.array(coords).T:
        distance_min = min(np.sum((point.T - pt)**2, axis=1))
        d_bg = min(distance_min, d_bg)
    coords = np.where(labels > 0)
    d_tube = 0
    for pt in np.array(coords).T:
        distance_min = min(np.sum((point.T - pt)**2, axis=1))
        d_tube = max(distance_min, d_tube)
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the polyline is greater than radius
    IV. maximum distance between 1-valued points and the polyline is less than or equal to radius
    """
    assert labels.shape == shape
    assert np.unique(labels).all() in [0, 1]
    assert d_bg > radius**2
    assert d_tube <= radius**2
Exemple #3
0
def test_draw_sphere():
    """
    Test if the function maps all the points located within the given radius of the given center to 1, otherwise 0

    The output array should have the same size of input image and binary values

    Distance between a point and the given center:
             <= radius (if the point has value 1)
             >  radius (if the point has value 0)
    """
    ngl_session = NeuroglancerSession(url=url, url_segments=url_seg)
    img, _, _ = ngl_session.pull_vertex_list(2, [4], expand=True)
    shape = img.shape
    center = [
        np.random.randint(shape[0]),
        np.random.randint(shape[1]),
        np.random.randint(shape[2]),
    ]
    radius = np.random.randint(1, 4)
    sphere = tube_seg.draw_sphere(shape, center, radius)
    coords = np.where(sphere < 1)
    d_bg = min(np.sum((np.array(coords).T - center)**2, axis=1))
    coords = np.where(sphere > 0)
    d_s = max(np.sum((np.array(coords).T - center)**2, axis=1))
    """
    Verify:
    
    I. the size of output array
    II. if the output is binary-valued
    III. minimum distance between 0-valued points and the center is greater than radius
    IV. maximum distance between 1-valued points and the center is less than or equal to radius
    """
    assert sphere.shape == shape
    assert np.unique(sphere).all() in [0, 1]
    assert d_bg > radius**2
    assert d_s <= radius**2
Exemple #4
0
def test_pull_v_list():
    url = "s3://mouse-light-viz/precomputed_volumes/brain1"
    ngl = NeuroglancerSession(url, mip=4, url_segments=url + "_segments")
    img, bounds, voxel = ngl.pull_vertex_list(2, np.arange(10))
    assert True
Exemple #5
0
G = swc.df_to_graph(df_voxel=df_voxel)
G_s3 = swc.df_to_graph(df_voxel=df_voxel_s3)

# convert directed graph into list of paths
paths = swc.graph_to_paths(G)
paths_s3 = swc.graph_to_paths(G_s3)

# create a subset of the dataframe
url = "s3://mouse-light-viz/precomputed_volumes/brain1_lowres"
mip = 1
ngl = NeuroglancerSession(url, mip=mip, url_segments=url + "_segments")
buffer = [10, 10, 10]
subneuron_df = df_s3[0:5]
vertex_list = subneuron_df["sample"].array
img, bounds, vox_in_img_list = ngl.pull_vertex_list(2,
                                                    vertex_list,
                                                    buffer=buffer,
                                                    expand=True)
df_s3_subset = swc.generate_df_subset(df_s3[0:5], vox_in_img_list)


def test_read_s3_dataframe():
    """test if output is correct type (pd.DataFrame)"""
    try:
        assert isinstance(df_s3, pd.DataFrame)
    except:
        print("s3 still buggin")


def test_read_swc_dataframe():
    """test if output is correct type (pd.DataFrame)"""
    assert isinstance(df, pd.DataFrame)