Exemple #1
0
def _translate_two_qubit_cirq_operation_to_braket_instruction(
    op: "cirq.Operation", ) -> List[Instruction]:
    """Translates a two-qubit Cirq operation to a (sequence of) Braket
    instruction(s) according to the following rules:

    1. Attempts to find a "standard translation" from Cirq to Braket.
        - e.g., checks if `op` is a CNOT and, if so, returns the Braket CNOT.

    2. If (1) is not successful, performs a KAK decomposition of the unitary of
    `op` to obtain a circuit

        ──A1──X^0.5───@───X^a───X──────────────────@───B1───
                      │         │                  │
        ──A2──────────X───Y^b───@───X^-0.5───Z^c───X───B2────

    where A1, A2, B1, and B2 are arbitrary single-qubit unitaries and a, b, c
    are floats.

    Args:
        op: Two-qubit Cirq operation to translate.
    """
    # Translate qubit indices.
    q1, q2 = [qubit.x for qubit in op.qubits]

    # Check common two-qubit gates.
    if isinstance(op.gate, cirq_ops.CNotPowGate) and np.isclose(
            abs(op.gate.exponent), 1.0):
        return [Instruction(braket_gates.CNot(), [q1, q2])]
    elif isinstance(op.gate, cirq_ops.CZPowGate) and np.isclose(
            abs(op.gate.exponent), 1.0):
        return [Instruction(braket_gates.CZ(), [q1, q2])]
    elif isinstance(op.gate, cirq_ops.ISwapPowGate) and np.isclose(
            op.gate.exponent, 1.0):
        return [Instruction(braket_gates.ISwap(), [q1, q2])]
    elif isinstance(op.gate, cirq_ops.XXPowGate):
        return [
            Instruction(braket_gates.XX(op.gate.exponent * np.pi), [q1, q2])
        ]
    elif isinstance(op.gate, cirq_ops.YYPowGate):
        return [
            Instruction(braket_gates.YY(op.gate.exponent * np.pi), [q1, q2])
        ]
    elif isinstance(op.gate, cirq_ops.ZZPowGate):
        return [
            Instruction(braket_gates.ZZ(op.gate.exponent * np.pi), [q1, q2])
        ]

    # Arbitrary two-qubit unitary decomposition.
    kak = kak_decomposition(protocols.unitary(op))
    A1, A2 = kak.single_qubit_operations_before

    x, y, z = kak.interaction_coefficients
    a = x * -2 / np.pi + 0.5
    b = y * -2 / np.pi + 0.5
    c = z * -2 / np.pi + 0.5

    B1, B2 = kak.single_qubit_operations_after

    return [
        *_translate_one_qubit_cirq_operation_to_braket_instruction(A1, q1),
        *_translate_one_qubit_cirq_operation_to_braket_instruction(A2, q2),
        Instruction(braket_gates.Rx(0.5 * np.pi), q1),
        Instruction(braket_gates.CNot(), [q1, q2]),
        Instruction(braket_gates.Rx(a * np.pi), q1),
        Instruction(braket_gates.Ry(b * np.pi), q2),
        Instruction(braket_gates.CNot(), [q2, q1]),
        Instruction(braket_gates.Rx(-0.5 * np.pi), q2),
        Instruction(braket_gates.Rz(c * np.pi), q2),
        Instruction(braket_gates.CNot(), [q1, q2]),
        *_translate_one_qubit_cirq_operation_to_braket_instruction(B1, q1),
        *_translate_one_qubit_cirq_operation_to_braket_instruction(B2, q2),
    ]
Exemple #2
0
def _translate_one_qubit_cirq_operation_to_braket_instruction(
    op: Union[np.ndarray, "cirq.Operation"],
    target: Optional[int] = None,
) -> List[Instruction]:
    """Translates a one-qubit Cirq operation to a (sequence of) Braket
    instruction(s) according to the following rules:

    1. Attempts to find a "standard translation" from Cirq to Braket.
        - e.g., checks if `op` is Pauli-X and, if so, returns the Braket X.

    2. If (1) is not successful, decomposes the unitary of `op` to
    Rz(theta) Ry(phi) Rz(lambda) and returns the series of rotations as Braket
    instructions.

    Args:
        op: One-qubit Cirq operation to translate.
        target: Qubit index for the op to act on. Must be specified and if only
            if `op` is given as a numpy array.
    """
    # Translate qubit index.
    if not isinstance(op, np.ndarray):
        target = op.qubits[0].x

    if target is None:
        raise ValueError(
            "Arg `target` must be specified when `op` is a matrix.")

    # Check common single-qubit gates.
    if isinstance(op, cirq_ops.Operation):
        if isinstance(op.gate, cirq_ops.XPowGate):
            exponent = op.gate.exponent

            if np.isclose(exponent, 1.0) or np.isclose(exponent, -1.0):
                return [Instruction(braket_gates.X(), target)]
            elif np.isclose(exponent, 0.5):
                return [Instruction(braket_gates.V(), target)]
            elif np.isclose(exponent, -0.5):
                return [Instruction(braket_gates.Vi(), target)]

            return [Instruction(braket_gates.Rx(exponent * np.pi), target)]

        elif isinstance(op.gate, cirq_ops.YPowGate):
            exponent = op.gate.exponent

            if np.isclose(exponent, 1.0) or np.isclose(exponent, -1.0):
                return [Instruction(braket_gates.Y(), target)]

            return [Instruction(braket_gates.Ry(exponent * np.pi), target)]

        elif isinstance(op.gate, cirq_ops.ZPowGate):
            exponent = op.gate.exponent

            if np.isclose(exponent, 1.0) or np.isclose(exponent, -1.0):
                return [Instruction(braket_gates.Z(), target)]
            elif np.isclose(exponent, 0.5):
                return [Instruction(braket_gates.S(), target)]
            elif np.isclose(exponent, -0.5):
                return [Instruction(braket_gates.Si(), target)]
            elif np.isclose(exponent, 0.25):
                return [Instruction(braket_gates.T(), target)]
            elif np.isclose(exponent, -0.25):
                return [Instruction(braket_gates.Ti(), target)]

            return [Instruction(braket_gates.Rz(exponent * np.pi), target)]

        elif isinstance(op.gate, cirq_ops.HPowGate) and np.isclose(
                abs(op.gate.exponent), 1.0):
            return [Instruction(braket_gates.H(), target)]

    # Arbitrary single-qubit unitary decomposition.
    # TODO: This does not account for global phase.
    if isinstance(op, cirq_ops.Operation):
        unitary_matrix = protocols.unitary(op)
    else:
        unitary_matrix = op

    a, b, c = deconstruct_single_qubit_matrix_into_angles(unitary_matrix)
    return [
        Instruction(braket_gates.Rz(a), target),
        Instruction(braket_gates.Ry(b), target),
        Instruction(braket_gates.Rz(c), target),
    ]
#     "cz": gates.CZ,
#     # "ch": CHGate,
#     # "crx": CRXGate,
#     # "cry": CRYGate,
#     # "crz": CRZGate,
#     # "cu1": CU1Gate,
#     # "cu3": CU3Gate,
#     "ccx": gates.CCNot,
#     "cswap": gates.CSwap
# }

# TODO: look into a possibility to use device's native gates set (no the IBMQ natives!)
# First element is executed first!
_qiskit_2_braket_conversion = {
    "u1": lambda lam: [gates.Rz(lam)],
    "u2": lambda phi, lam: [gates.Rz(lam), gates.Ry(numpy.pi/2), gates.Rz(phi)],
    "u3": lambda theta, phi, lam: [gates.Rz(lam),
                                   gates.Rx(numpy.pi/2),
                                   gates.Rz(theta),
                                   gates.Rx(-numpy.pi/2),
                                   gates.Rz(phi)],
    "cx": lambda: [gates.CNot()]
}


def convert_experiment(experiment: QasmQobjExperiment) -> Circuit:
    qc = Circuit()

    qasm_obj_instruction: QasmQobjInstruction
    for qasm_obj_instruction in experiment.instructions:
        name = qasm_obj_instruction.name
def _(ry: qml.RY, parameters):
    phi = parameters[0]
    return gates.Ry(-phi) if ry.inverse else gates.Ry(phi)
Exemple #5
0
 "circuit,expected_unitary",
 [
     (Circuit().h(0), gates.H().to_matrix()),
     (Circuit().h(0).add_result_type(
         ResultType.Probability(target=[0])), gates.H().to_matrix()),
     (Circuit().x(0), gates.X().to_matrix()),
     (Circuit().y(0), gates.Y().to_matrix()),
     (Circuit().z(0), gates.Z().to_matrix()),
     (Circuit().s(0), gates.S().to_matrix()),
     (Circuit().si(0), gates.Si().to_matrix()),
     (Circuit().t(0), gates.T().to_matrix()),
     (Circuit().ti(0), gates.Ti().to_matrix()),
     (Circuit().v(0), gates.V().to_matrix()),
     (Circuit().vi(0), gates.Vi().to_matrix()),
     (Circuit().rx(0, 0.15), gates.Rx(0.15).to_matrix()),
     (Circuit().ry(0, 0.15), gates.Ry(0.15).to_matrix()),
     (Circuit().rz(0, 0.15), gates.Rz(0.15).to_matrix()),
     (Circuit().phaseshift(0, 0.15), gates.PhaseShift(0.15).to_matrix()),
     (Circuit().cnot(1, 0), gates.CNot().to_matrix()),
     (Circuit().cnot(1, 0).add_result_type(
         ResultType.StateVector()), gates.CNot().to_matrix()),
     (Circuit().swap(1, 0), gates.Swap().to_matrix()),
     (Circuit().swap(0, 1), gates.Swap().to_matrix()),
     (Circuit().iswap(1, 0), gates.ISwap().to_matrix()),
     (Circuit().iswap(0, 1), gates.ISwap().to_matrix()),
     (Circuit().pswap(1, 0, 0.15), gates.PSwap(0.15).to_matrix()),
     (Circuit().pswap(0, 1, 0.15), gates.PSwap(0.15).to_matrix()),
     (Circuit().xy(1, 0, 0.15), gates.XY(0.15).to_matrix()),
     (Circuit().xy(0, 1, 0.15), gates.XY(0.15).to_matrix()),
     (Circuit().cphaseshift(1, 0,
                            0.15), gates.CPhaseShift(0.15).to_matrix()),