Exemple #1
0
def test_generate_multiple(tmpdir, mock_generate):
    spec = ScalarPotentialSpec(16, 2, correlation.IsotropicGaussian(0.1), 1.0)
    spec.create = mock.Mock(side_effect=spec.create)
    for p_file in generate_multiple(spec,
                                    5,
                                    options=None,
                                    work_dir=str(tmpdir)):
        spec.create.assert_called_once_with(p_file.file_name, options={})
        spec.create.reset_mock()
        assert p_file.file_name.startswith(str(tmpdir))

    assert mock_generate.call_count() == 5
Exemple #2
0
def test_scalar_potential_generate(tmpdir, mock_generate):
    cor = correlation.IsotropicGaussian(1.0)
    sp = ScalarPotentialSpec((25, 25), None, cor, 1.5)
    target_file = str(tmpdir.join("target_file"))

    result = sp.create(target_file, 25)
    mock_generate.assert_called_once_with(target_file, 2, (25, 25), cor, 1.5,
                                          25)
    assert result.file_name == target_file

    with mock.patch("branchedflowsim.potgen.generate") as potgen:
        result = sp.create(target_file, 25, {"option": "value"})
    potgen.assert_called_with(target_file,
                              2, (25, 25),
                              cor,
                              1.5,
                              25,
                              option="value")
    assert result.file_name == target_file
Exemple #3
0
def test_scalar_potential_spec():
    cor = correlation.IsotropicGaussian(1.0)
    sp = ScalarPotentialSpec((25, 25), None, cor, 1.5)
    assert sp.shape == (25, 25)
    assert sp.dimension == 2
    assert sp.support == pytest.approx(np.ones(2))
    assert sp.strength == 1.5
    assert sp.correlation == cor

    sp = ScalarPotentialSpec(12, 3, cor, 1.5)
    assert sp.shape == (12, 12, 12)
    assert sp.dimension == 3
    assert sp.support == pytest.approx(np.ones(3))
    assert sp.strength == 1.5
    assert sp.correlation == cor

    with pytest.raises(ValueError):
        sp = ScalarPotentialSpec((25, 25), 3, cor, 1.5)

    sp = ScalarPotentialSpec((25, 25), None, cor, 1.5)
    assert sp.dimension == 2
def test_iso_gauss():
    c = correlation.IsotropicGaussian(0.5)
    assert c.args == ["-c", "gauss", "-l", "0.5"]

def test_trafo():
    c = correlation.Transformed(correlation.AnisotropicGaussian(0.5, [1, 2]),
                                [1, 0, 0, 1])
    assert type(c.base_correlation) == correlation.AnisotropicGaussian
    assert c.transform == pytest.approx([1, 0, 0, 1])
    assert c.args == [
        "-c", "gauss", "1", "2", "--trafo", '"1 0 0 1"', "-l", "0.5"
    ]


correlations = [
    correlation.Correlation("gauss", 0.5),
    correlation.Parametrized("gauss", 0.5, "param"),
    correlation.IsotropicGaussian(0.5),
    correlation.AnisotropicGaussian(0.5, [1.0, 2.0, 2.0]),
    correlation.CustomScript(0.5, "script",
                             OrderedDict([("arg", 5), ("param", 8)])),
    correlation.Transformed(correlation.AnisotropicGaussian(0.5, [1, 2]),
                            [1, 0, 0, 1])
]


@pytest.mark.parametrize("corr", correlations)
def test_as_dict_round_trip(corr):
    dict_rep = corr.as_dict

    reconstructed = correlation.Correlation.from_dict(dict_rep)

    assert corr == reconstructed