def main():
    print "initiating engine..."
    seed = 9999
    dequeueCount = 0
    time_start = time.time()
    targetProcess = "node server.js"
    targetSignal = signal.SIGUSR1
    serverMinTimeDelay = 5

    pid = getpid(targetProcess)
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
        if seed \
        else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
    trajectory = []
    
    while time.time() - time_start < 600:
        time_thisLoop = time.time()
        if not q.empty():
            while (not q.empty()):
                slam.update(q.get())
                dequeueCount = dequeueCount + 1
                x_mm, y_mm, theta_degrees = slam.getpos()    
                trajectory.append((x_mm, y_mm))
                                        
            # Create a byte array to receive the computed maps
            mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
            
            # Get map from this batch
            slam.getmap(mapbytes)
            
            # Put trajectory into map as black pixels
            for coords in trajectory:
                        
                x_mm, y_mm = coords
                                       
                x_pix = mm2pix(x_mm)
                y_pix = mm2pix(y_mm)
                                                                                                      
                mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;
                            
            # Save map and trajectory as PNG file
            image = Image.frombuffer('L', (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS), mapbytes, 'raw', 'L', 0, 1)
            image.save("../../webgui/images/" + "map" + ".png")
            print "map created after {} scans".format(dequeueCount)

            # Try to tell the server
            if pid == False:
                print "failure: no server pid"
                pid = getpid(targetProcess)
            else:
                try:
                    os.kill(int(pid),targetSignal)
                    print "success: signal sent to server"
                except OSError:
                    print "error: whoops, just lost the pid"
                    pid = getpid(targetProcess)

            # give the server at least serverMinTimeDelay seconds to catch up
            while time.time() - time_thisLoop < serverMinTimeDelay:
                ()
Exemple #2
0
def main():

    # Bozo filter for input args
    if len(argv) < 4:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Allocate byte array to receive map updates
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Load the data from the file
    timestamps, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Set up a SLAM display, named by dataset
    display = SlamShow(MAP_SIZE_PIXELS,
                       MAP_SIZE_METERS * 1000 / MAP_SIZE_PIXELS, dataset)

    # Pose will be modified in our threaded code
    pose = [0, 0, 0]

    # Launch the data-collection / update thread
    thread = Thread(target=threadfunc,
                    args=(robot, slam, timestamps, lidars,
                          odometries if use_odometry else None, mapbytes,
                          pose))
    thread.daemon = True
    thread.start()

    # Loop forever,displaying current map and pose
    while True:

        # Display map and robot pose
        display.displayMap(mapbytes)
        display.setPose(*pose)

        # Refresh the display, exiting gracefully if user closes it
        if not display.refresh():
            exit(0)
Exemple #3
0
def main():
    seed = 9999
    runCount = 0
    dequeueCount = 0
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
    trajectory = []
    while dequeueCount < 1000:
        time.sleep(10)
        if q.empty() == False:
            while (q.empty() == False):
                slam.update(q.get())
                #print "%i" %dequeueCount
                dequeueCount = dequeueCount + 1
                x_mm, y_mm, theta_degrees = slam.getpos()
                trajectory.append((x_mm, y_mm))

            # Create a byte array to receive the computed maps
            mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

            # Get final map
            slam.getmap(mapbytes)

            # Put trajectory into map as black pixels
            for coords in trajectory:

                x_mm, y_mm = coords

                x_pix = mm2pix(x_mm)
                y_pix = mm2pix(y_mm)

                mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

            # Save map and trajectory as PNG file
            image = Image.frombuffer('L', (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS),
                                     mapbytes, 'raw', 'L', 0, 1)
            #image.save('map%i.png' %runCount)
            #image.save("/home/card/webgui/images/" + "map" + str(dequeueCount) + ".png")
            image.save("/home/card/webgui/images/" + "map" + ".png")
Exemple #4
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file, ignoring timestamps
    _, lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computePoseChange(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Pickle the map to a file
    pklname = dataset + '.map'
    print('Writing map to file ' + pklname)
    pickle.dump(mapbytes, open(pklname, 'wb'))
Exemple #5
0
def main():
	    
    # Bozo filter for input args
    if len(argv) < 4:
        print('Usage:   %s <dataset> <output_dir> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 output 1 9999' % argv[0])
        exit(1)
    
    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed =  int(argv[3])
    output_filename = argv[4]
    draw_trajectory = True if int(argv[5]) else False
    
    print("dataset: " + dataset)
    print("use_odometry: " + str(use_odometry))
    print("seed: " + str(seed))
    print("output_filename: " + output_filename)
    print("draw_trajectory: " + str(draw_trajectory))

	# Load the data from the file, ignoring timestamps
    _, lidars, odometries = load_data('.', dataset)
    
    # Build a robot model if we want odometry
    robot = Robot() if use_odometry else None
        
    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(Laser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(Laser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)
           
    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)
    
    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()
    
    # Loop over scans    
    for scanno in range(nscans):
    
        if use_odometry:
                  
            # Convert odometry to pose change (dxy_mm, dtheta_degrees, dt_seconds)
            velocities = robot.computePoseChange(odometries[scanno])
                                 
            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)
            
        else:
        
            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()    
        
        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))
        
        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' % (nscans, elapsed_sec, nscans/elapsed_sec))
                    
                                
    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    
    # Get final map    
    slam.getmap(mapbytes)
    
    if(draw_trajectory):

        # Put trajectory into map as black pixels
        for coords in trajectory:
                
            x_mm, y_mm = coords
                               
            x_pix = mm2pix(x_mm)
            y_pix = mm2pix(y_mm)
                                                                                              
            mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0;
                    
    # Save map and trajectory as PGM file    
    pgm_save(output_filename, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
Exemple #6
0
def main(log, readlog, only_odometry, sensorFile, odomFile, resultname,
         mapconfig):
    initialized = False
    sensor = None
    navigation = None
    robot = None
    server = None
    try:
        #Initialize Sensor
        if (readlog):
            sensor = FileXTION(sensorFile)
        else:
            sensor = XTION(log)

        #Initialize Slam
        if (only_odometry):
            slam = Deterministic_SLAM(sensor, mapconfig.SIZE_PIXELS,
                                      mapconfig.SIZE_METERS)
        else:
            slam = My_SLAM(sensor,
                           mapconfig.SIZE_PIXELS,
                           mapconfig.SIZE_METERS,
                           random_seed=SEED)

        #Initialize Robot
        if (readlog):
            robot = FileDrone(odomFile)
        else:
            robot = NetworkVehicle(log)
            robot.initialize()

        #Open Controll and Map Server
        server = Server(slam, mapconfig.SIZE_PIXELS, robot)
        server.start()

        #Initialize Navigation
        if (not readlog):
            navigation = Navigation(slam, mapconfig, robot.getSize(),
                                    RELEVANT_LIDARS, SECURITY_DIST_MM,
                                    Commands)
            navigation.start()

        #Monitors
        scanno = 0
        dist = 0
        timePast = 0
        trajectory = []
        start_sec = time()

        #Make initial scan
        scan = sensor.scan()

        initialized = True

        #Main loop
        while (True):
            scanno += 1

            #get command
            if (readlog):
                command = None
            else:
                command = navigation.update(scan)

                if (command == None):
                    print "Navigation terminated."
                    break

            #send command and get odometry
            velocities = robot.move(command)

            #check if velocities are valid
            if (velocities == None):
                print "Robot terminated."
                break

            #update monitors
            dist += velocities[0]
            timePast += velocities[2]

            #get scan
            scan = sensor.scan()

            #check if scan is valid
            if (len(scan) <= 0):
                print "Sensor terminated."
                break

            #Update SLAM
            slam.update(scan, velocities)

            # Get new position
            x_mm, y_mm, theta_degrees = slam.getpos()

            # Add new position to trajectory
            trajectory.append((x_mm, y_mm))

    except KeyboardInterrupt:
        print "Program stoped!"
    finally:
        print "Shutting down."
        if (sensor != None): sensor.shutdown()
        if (navigation != None): navigation.stop()
        if (robot != None): robot.shutdown()
        if (server != None): server.close()

    if (initialized):
        #Print results
        elapsed_sec = time() - start_sec
        print('\n%d scans in %f sec = %f scans / sec' %
              (scanno, elapsed_sec, scanno / elapsed_sec))
        print('Distance traveled:%f mm in %fs' % (dist, timePast))

        #generate map
        mapbytes = createMap(slam, trajectory, mapconfig)
        # Save map and trajectory as png file
        mapconfig.safeaspng(mapbytes, resultname)
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> [random_seed]' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None
    lidarobj = Laser(360, 12, 360, 8000)

    # Create a CoreSLAM object with laser params and robot object
    slam = RMHC_SLAM(lidarobj, MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Start with an empty trajectory of positions
    trajectory = []
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)
    suffix = 1

    while (True):

        if (use_odometry):

            mutex.acquire()

            mainLCMQ = lcmQ
            mainODOQ = odoQ

            # Clear Queues once copied from thread into main for next batch of data
            lcmQ.queue.clear()
            odoQ.queue.clear()

            mutex.release()

            velocities = robot.computePoseChange(mainODOQ.get())
            slam.update(mainLCMQ.get(), velocities)
            x_mm, y_mm, theta_degrees = slam.getpos()

            x_pix = mm2pix(x_mm)
            y_pix = mm2pix(y_mm)

            trajectory.append((y_pix, x_pix))
            slam.getmap(mapbytes)

            trajLen = len(trajectory)

            for i in range(trajLen):
                if (i == (trajLen - 1)):
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 0
                else:
                    mapbytes[trajectory[i][0] * MAP_SIZE_PIXELS +
                             trajectory[i][1]] = 120

            filename = dataset + str(suffix)
            pgm_save('%s.pgm' % filename, mapbytes,
                     (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
            suffix += 1

            if (keyPressed == 's'):

                #Wrap up last map using leftover data
                pgm_save('%s.pgm' % filename, mapbytes,
                         (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))
                '''
                This will take all the maps generated and place them into pgmbagfolder
                For this to work, make sure your destination directory has a folder called pgmbagfolder
                Change the directory:

                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples
                and
                /home/Shaurya98/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder

                With your own destination directory. It it recommended to put pgmbagfolder under the examples
                directory
                '''

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                )
                for pgm_file in glob.iglob('*.pgm'):
                    os.remove(pgm_file)
                print("\nEmptied pgmbagfolder")

                os.chdir(
                    "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples"
                )

                for pgm_file in glob.iglob('*.pgm'):
                    shutil.copy2(
                        pgm_file,
                        "/home/pi/rplidar_workspace/src/mapping/BreezySLAM/examples/pgmbagfolder"
                    )
                    os.remove(pgm_file)

                print("\nFiles recorded and sent to pgmbagfolder")

                #Terminate threads before exiting main()
                thread1.join()
                thread2.join()
                thread3.join()

                break
Exemple #8
0
def main(log, readlog, only_odometry, sensorFile, odomFile, resultname, mapconfig):
    initialized = False
    sensor = None
    navigation = None
    robot = None
    server = None
    try:
        #Initialize Sensor
        if(readlog):
            sensor = FileXTION(sensorFile)
        else:
            sensor = XTION(log)

        #Initialize Slam
        if(only_odometry):
            slam = Deterministic_SLAM(sensor, mapconfig.SIZE_PIXELS, mapconfig.SIZE_METERS)
        else:
            slam = My_SLAM(sensor, mapconfig.SIZE_PIXELS, mapconfig.SIZE_METERS, random_seed = SEED)

        #Initialize Robot
        if(readlog):
            robot = FileDrone(odomFile)
        else:
            robot = NetworkVehicle(log)
            robot.initialize()

        #Open Controll and Map Server
        server = Server(slam, mapconfig.SIZE_PIXELS, robot)
        server.start()

        #Initialize Navigation
        if(not readlog):
            navigation = Navigation(slam, mapconfig, robot.getSize(), RELEVANT_LIDARS, SECURITY_DIST_MM, Commands)
            navigation.start()

        #Monitors
        scanno = 0
        dist = 0
        timePast = 0
        trajectory = []
        start_sec = time()

        #Make initial scan
        scan = sensor.scan()

        initialized = True

        #Main loop
        while(True):
            scanno += 1

            #get command
            if(readlog):
                command = None
            else:
                command = navigation.update(scan)
                
                if(command == None):
                    print "Navigation terminated."
                    break

            #send command and get odometry
            velocities = robot.move(command)

            #check if velocities are valid
            if(velocities == None):
                print "Robot terminated."
                break

            #update monitors
            dist += velocities[0]
            timePast += velocities[2]

            #get scan
            scan = sensor.scan()

            #check if scan is valid
            if(len(scan)<=0):
                print "Sensor terminated."
                break

            #Update SLAM
            slam.update(scan, velocities)

            # Get new position
            x_mm, y_mm, theta_degrees = slam.getpos()    
        
            # Add new position to trajectory
            trajectory.append((x_mm, y_mm))

    except KeyboardInterrupt:
        print "Program stoped!"
    finally:
        print "Shutting down."
        if(sensor != None): sensor.shutdown()
        if(navigation != None): navigation.stop()
        if(robot != None): robot.shutdown()
        if(server != None): server.close()

    if(initialized):
        #Print results
        elapsed_sec = time() - start_sec
        print('\n%d scans in %f sec = %f scans / sec' % (scanno, elapsed_sec, scanno/elapsed_sec))
        print ('Distance traveled:%f mm in %fs' % (dist, timePast))

        #generate map
        mapbytes = createMap(slam, trajectory, mapconfig)
        # Save map and trajectory as png file        
        mapconfig.safeaspng(mapbytes, resultname)
Exemple #9
0
def main():

    # Bozo filter for input args
    if len(argv) < 3:
        print('Usage:   %s <dataset> <use_odometry> <random_seed>' % argv[0])
        print('Example: %s exp2 1 9999' % argv[0])
        exit(1)

    # Grab input args
    dataset = argv[1]
    use_odometry = True if int(argv[2]) else False
    seed = int(argv[3]) if len(argv) > 3 else 0

    # Load the data from the file
    lidars, odometries = load_data('.', dataset)

    # Build a robot model if we want odometry
    robot = Rover() if use_odometry else None

    # Create a CoreSLAM object with laser params and optional robot object
    slam = RMHC_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed) \
           if seed \
           else Deterministic_SLAM(MinesLaser(), MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    # Report what we're doing
    nscans = len(lidars)
    print('Processing %d scans with%s odometry / with%s particle filter...' % \
        (nscans, \
         '' if use_odometry else 'out', '' if seed else 'out'))
    progbar = ProgressBar(0, nscans, 80)

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop over scans
    for scanno in range(nscans):

        if use_odometry:

            # Convert odometry to velocities
            velocities = robot.computeVelocities(odometries[scanno])

            # Update SLAM with lidar and velocities
            slam.update(lidars[scanno], velocities)

        else:

            # Update SLAM with lidar alone
            slam.update(lidars[scanno])

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        # Tame impatience
        progbar.updateAmount(scanno)
        stdout.write('\r%s' % str(progbar))
        stdout.flush()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (nscans, elapsed_sec, nscans / elapsed_sec))

    # Create a byte array to receive the computed maps
    mapbytes = bytearray(MAP_SIZE_PIXELS * MAP_SIZE_PIXELS)

    # Get final map
    slam.getmap(mapbytes)

    # Put trajectory into map as black pixels
    for coords in trajectory:

        x_mm, y_mm = coords

        x_pix = mm2pix(x_mm)
        y_pix = mm2pix(y_mm)

        mapbytes[y_pix * MAP_SIZE_PIXELS + x_pix] = 0

    # Save map and trajectory as PNG file
    image = Image.frombuffer('L', (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS), mapbytes,
                             'raw', 'L', 0, 1)
    image.save('%s.png' % dataset)
Exemple #10
0
def main(g=0.4, h=0.4):

    filename = 'map_%f_%f' % (g, h)
    """
    if(use_odometry):
        filename += 'withodometry_'
    if(readlog):
        filename += 'fromlog_'
    if(seed==0):
        filename += 'deterministic'
    else:
        filename += ('rmhc_seed' + str(seed))
    """

    #initialize the asus xtion as sensor
    if (readlog):
        sensor = FileXTION("log")
    else:
        sensor = XTION()  #NetworkSensor() #

    # Create a CoreSLAM object with laser params and optional robot object
    slam = My_SLAM(sensor, MAP_SIZE_PIXELS, MAP_SIZE_METERS, random_seed=seed, g=g, h=h) \
        if seed \
        else Deterministic_SLAM(sensor, MAP_SIZE_PIXELS, MAP_SIZE_METERS)

    robot = None

    #initialiye robot
    if (use_odometry):
        navigation = Navigation(slam, MapConfig(), ROBOT_SIZE_METERS, 50, 800,
                                Commands)

        if (readlog):
            robot = FileDrone("odometry")
        else:
            robot = NetworkVehicle()  #Drone()
            robot.initialize()
    if (stream):
        server = Server(slam, MAP_SIZE_PIXELS, robot)
        server.start()

    # Start with an empty trajectory of positions
    trajectory = []

    # Start timing
    start_sec = time()

    # Loop
    atexit.register(set_normal_term)
    set_curses_term()

    scanno = 0

    dist = 0
    zeit = 0

    if (use_odometry): navigation.start()

    ##make initial scan
    scan = sensor.scan()

    while (True):
        scanno += 1
        if use_odometry:
            ##navigaiton

            command = navigation.update(scan)
            #print command

            ##odometry
            velocities = robot.move(command)
            dist += velocities[0]
            zeit += velocities[2]
            print velocities
            ##lidar
            scan = sensor.scan()

            if (len(scan) <= 0):
                print 'Reader error or end of file.'
                break

            # Update SLAM with lidar and velocities
            slam.update(scan, velocities)

        else:
            scan = sensor.scan()
            if (len(scan) <= 0):
                print 'Reader error or end of file.'
                break

            # Update SLAM with lidar alone
            slam.update(scan)

        # Get new position
        x_mm, y_mm, theta_degrees = slam.getpos()

        # Add new position to trajectory
        trajectory.append((x_mm, y_mm))

        if kbhit():
            break

    if (use_odometry):
        robot.shutdown()
        navigation.stop()

    # Report elapsed time
    elapsed_sec = time() - start_sec
    print('\n%d scans in %f sec = %f scans / sec' %
          (scanno, elapsed_sec, scanno / elapsed_sec))

    print('dist traveled:%f mm in %fs' % (dist, zeit))

    mapbytes = createMap(slam, trajectory)

    # Save map and trajectory as PGM file
    pgm_save(filename, mapbytes, (MAP_SIZE_PIXELS, MAP_SIZE_PIXELS))

    image = cv2.imread(filename, 0)
    print "Accessing the image.. again. So dirty."
    print "Saving as .png: ..."
    cv2.imwrite("test.png", image)

    if (stream):
        server.close()
    print "done"