def _init_pars(self): spec = rnn.parameters( self.n_inpt, self.n_hiddens, self.n_output, self.skip_to_out, self.hidden_transfers) self.parameters = ParameterSet(**spec) self.parameters.data[:] = np.random.standard_normal( self.parameters.data.shape).astype(theano.config.floatX)
def parameters(n_inpt, n_hiddens, n_output, skip_to_out=False, hidden_transfers=None, out_transfer=None, prefix=''): spec = rnn.parameters(n_inpt, n_hiddens, n_output, skip_to_out, hidden_transfers, out_transfer, prefix) if hidden_transfers is not None: hiddens_inoutsizes = [rnn.inout_size(i) for i in hidden_transfers] else: hiddens_inoutsizes = [(1, 1) for _ in n_hiddens] hiddens_insizes, hiddens_outsizes = zip(*hiddens_inoutsizes) total_hidden_outsizes = [ i * j for i, j in zip(n_hiddens, hiddens_outsizes) ] for i, j in enumerate(total_hidden_outsizes): spec['initial_hidden_means_%i' % i] = j spec['initial_hidden_vars_%i' % i] = j del spec['initial_hiddens_%i' % i] return spec
def parameters(n_inpt, n_hiddens, n_output, skip_to_out=False, hidden_transfers=None, out_transfer=None, prefix=''): spec = rnn.parameters(n_inpt, n_hiddens, n_output, skip_to_out, hidden_transfers, out_transfer, prefix) if hidden_transfers is not None: hiddens_inoutsizes = [rnn.inout_size(i) for i in hidden_transfers] else: hiddens_inoutsizes = [(1, 1) for _ in n_hiddens] hiddens_insizes, hiddens_outsizes = zip(*hiddens_inoutsizes) total_hidden_outsizes = [i * j for i, j in zip(n_hiddens, hiddens_outsizes)] for i, j in enumerate(total_hidden_outsizes): spec['initial_hidden_means_%i' % i] = j spec['initial_hidden_vars_%i' % i] = j del spec['initial_hiddens_%i' % i] return spec
def _gen_par_spec(self): """Return the parameter specification of the generating model.""" n_output = self.assumptions.visible_layer_size(self.n_inpt) return rnn.parameters( self.n_latent + self.n_inpt, self.n_hiddens_gen, n_output)
def _init_pars(self): spec = rnn.parameters(self.n_inpt, self.n_hiddens, self.n_output, self.skip_to_out, self.hidden_transfers) self.parameters = ParameterSet(**spec) self.parameters.data[:] = np.random.standard_normal( self.parameters.data.shape).astype(theano.config.floatX)