def run(self, **param_values): delays = param_values.pop('delays', zeros(self.neurons)) # print self.refractory,self.max_refractory if self.max_refractory is not None: refractory = param_values.pop('refractory', zeros(self.neurons)) else: refractory = self.refractory*ones(self.neurons) tau_metric = param_values.pop('tau_metric', zeros(self.neurons)) self.update_neurongroup(**param_values) # repeat spike delays and refractory to take slices into account delays = kron(delays, ones(self.slices)) refractory = kron(refractory, ones(self.slices)) tau_metric = kron(tau_metric, ones(self.slices)) # TODO: add here parameters to criterion_params if a criterion must use some parameters criterion_params = dict(delays=delays) if self.criterion.__class__.__name__ == 'Brette': criterion_params['tau_metric'] = tau_metric self.update_neurongroup(**param_values) self.initialize_criterion(**criterion_params) if self.use_gpu: # Reinitializes the simulation object self.mf.reinit_vars(self.criterion_object, self.inputs_inline, self.inputs_offset, self.spikes_inline, self.spikes_offset, self.traces_inline, self.traces_offset, delays, refractory ) # LAUNCHES the simulation on the GPU self.mf.launch(self.sliced_duration, self.stepsize) # Synchronize the GPU values with a call to gpuarray.get() self.criterion_object.update_gpu_values() else: # set the refractory period if self.max_refractory is not None: self.group.refractory = refractory # Launch the simulation on the CPU self.group.clock.reinit() net = Network(self.group, self.criterion_object) if self.statemonitor_var is not None: self.statemonitors = [] for state in self.statemonitor_var: monitor = StateMonitor(self.group, state, record=True) self.statemonitors.append(monitor) net.add(monitor) net.run(self.sliced_duration) sliced_values = self.criterion_object.get_values() combined_values = self.combine_sliced_values(sliced_values) values = self.criterion_object.normalize(combined_values) return values
def transform_traces(self, traces): # from standard structure to inline structure K, T = traces.shape traces_inline = traces.flatten() traces_offset = array(kron(arange(K), T * ones(self.subpopsize)), dtype=int) return traces_inline, traces_offset
def evaluate(self, **param_values): """ Use fitparams['delays'] to take delays into account Use fitparams['refractory'] to take refractory into account """ delays = param_values.pop('delays', zeros(self.neurons)) refractory = param_values.pop('refractory', zeros(self.neurons)) tau_metric = param_values.pop('tau_metric', zeros(self.neurons)) # repeat spike delays and refractory to take slices into account delays = kron(delays, ones(self.slices)) refractory = kron(refractory, ones(self.slices)) tau_metric = kron(tau_metric, ones(self.slices)) self.update_neurongroup(**param_values) if self.criterion.__class__.__name__ == 'Brette': self.initialize_criterion(delays,tau_metric) else: self.initialize_criterion(delays) if self.use_gpu: pass ######### # TODO ######### # # Reinitializes the simulation object # self.mf.reinit_vars(self.input, self.I_offset, self.spiketimes, self.spiketimes_offset, delays, refractory) # # LAUNCHES the simulation on the GPU # self.mf.launch(self.duration, self.stepsize) # coincidence_count = self.mf.coincidence_count # spike_count = self.mf.spike_count else: # set the refractory period if self.max_refractory is not None: self.group.refractory = refractory # Launch the simulation on the CPU self.group.clock.reinit() net = Network(self.group, self.criterion_object) net.run(self.duration) sliced_values = self.criterion_object.get_values() combined_values = self.combine_sliced_values(sliced_values) values = self.criterion_object.normalize(combined_values) return values
def update_neurongroup(self, **param_values): """ Inject fitting parameters into the NeuronGroup """ # Sets the parameter values in the NeuronGroup object self.group.reinit() for param, value in param_values.iteritems(): self.group.state(param)[:] = kron(value, ones(self.slices)) # kron param_values if slicing # Reinitializes the model variables if self.initial_values is not None: for param, value in self.initial_values.iteritems(): self.group.state(param)[:] = value
def transform_traces(self, traces): # from standard structure to inline structure K, T = traces.shape traces_inline = traces.flatten() traces_offset = array(kron(arange(K), T*ones(self.subpopsize)), dtype=int) return traces_inline, traces_offset